Augmented Reality for assembly operation training: does immersion affect the recall performance?
This study aims at comparing three assembly training applications based on different XR technologies characterized by different degrees of immersion (i.e., an MR application based on Hololens 2, a desktop AR application and a digital handbook visualized on a monitor). A total of 54 subjects, recruit...
Saved in:
Published in | 2022 IEEE International Conference on Metrology for Extended Reality, Artificial Intelligence and Neural Engineering (MetroXRAINE) pp. 58 - 63 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
26.10.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study aims at comparing three assembly training applications based on different XR technologies characterized by different degrees of immersion (i.e., an MR application based on Hololens 2, a desktop AR application and a digital handbook visualized on a monitor). A total of 54 subjects, recruited among students and personnel of Università Politecnica delle Marche, have been involved. They were assigned to 3 groups age and gender matching. Each group is asked to complete the training related to the assembly of a Lego commercial set (i.e., LEGO 10593), using one of the three considered applications. Results allows us to observe the effects of the immersion on the recall performances, assessed in terms of recall completion time, assembly mistakes, picking mistakes and sequence mistakes. |
---|---|
AbstractList | This study aims at comparing three assembly training applications based on different XR technologies characterized by different degrees of immersion (i.e., an MR application based on Hololens 2, a desktop AR application and a digital handbook visualized on a monitor). A total of 54 subjects, recruited among students and personnel of Università Politecnica delle Marche, have been involved. They were assigned to 3 groups age and gender matching. Each group is asked to complete the training related to the assembly of a Lego commercial set (i.e., LEGO 10593), using one of the three considered applications. Results allows us to observe the effects of the immersion on the recall performances, assessed in terms of recall completion time, assembly mistakes, picking mistakes and sequence mistakes. |
Author | Mengoni, Maura Generosi, Andrea Agostinelli, Thomas Ceccacci, Silvia |
Author_xml | – sequence: 1 givenname: Andrea surname: Generosi fullname: Generosi, Andrea email: a.generosi@univpm.it organization: Università Politecnica delle Marche,Department of Industrial Engineering and Mathematical Sciences,Ancona,Italy – sequence: 2 givenname: Thomas surname: Agostinelli fullname: Agostinelli, Thomas email: t.agostinelli@pm.univpm.it organization: Università Politecnica delle Marche,Department of Industrial Engineering and Mathematical Sciences,Ancona,Italy – sequence: 3 givenname: Maura surname: Mengoni fullname: Mengoni, Maura email: m.mengoni@univpm.it organization: Università Politecnica delle Marche,Department of Industrial Engineering and Mathematical Sciences,Ancona,Italy – sequence: 4 givenname: Silvia surname: Ceccacci fullname: Ceccacci, Silvia email: silvia.ceccacci@unimc.it organization: University of Macerata,Cultural Heritage and Tourism,Department of Education,Macerata,Italy |
BookMark | eNotj7FOwzAURY0EA5R-AYsXxhT72XFsFhRVBSoVkCqQ2MpL81IsJXblmKF_TxGd7nB0j3Su2HmIgRi7lWImpXB3L5RT_FzXy9dFqS3YGQiAmXOmKkGcsamrrDTmiMpKm0v2Vf_sBgqZWr4m7H0-8C4mjuNIQ9MfeNxTwuxj4DmhDz7s7nkbaeR-GCiNfwC7jraZ52_iibbY9_z4OUoGDFt6uGYXHfYjTU87YR-Pi_f5c7F6e1rO61XhpVK5gFZQ1aIGAxYaIxUo6YRuSoPodEMK0IKDziGY1mqhhDCODLUNSWdBqwm7-fd6Itrskx8wHTanbvULjPRV1A |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/MetroXRAINE54828.2022.9967520 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9781665485746 1665485744 |
EndPage | 63 |
ExternalDocumentID | 9967520 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i133t-2d0e7da426282b613231904b56aa94be32a8292f9a26d84030069e6edbe198243 |
IEDL.DBID | RIE |
IngestDate | Thu Jan 18 11:14:22 EST 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i133t-2d0e7da426282b613231904b56aa94be32a8292f9a26d84030069e6edbe198243 |
PageCount | 6 |
ParticipantIDs | ieee_primary_9967520 |
PublicationCentury | 2000 |
PublicationDate | 2022-Oct.-26 |
PublicationDateYYYYMMDD | 2022-10-26 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-Oct.-26 day: 26 |
PublicationDecade | 2020 |
PublicationTitle | 2022 IEEE International Conference on Metrology for Extended Reality, Artificial Intelligence and Neural Engineering (MetroXRAINE) |
PublicationTitleAbbrev | MetroXRAINE |
PublicationYear | 2022 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.8210756 |
Snippet | This study aims at comparing three assembly training applications based on different XR technologies characterized by different degrees of immersion (i.e., an... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 58 |
SubjectTerms | Assembly training Augmented Reality Extended reality Immersion Manufacturing Metrology Neural engineering Personnel Recall Performance Training Visualization X reality |
Title | Augmented Reality for assembly operation training: does immersion affect the recall performance? |
URI | https://ieeexplore.ieee.org/document/9967520 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8JAEN0gB-NJDRi_swe92QLbdmG9GGIgaAIxRBJuuB9TQ6yUYHvQX-_stkA0Hrw1bTZtdrL73mxn3iPkCmJtjdutTqWKvVC07JIyAle8jCyfVqHzjByO-GASPk6jaYXcbHphAMAVn4FvL92_fJPq3B6VNZCbtyOGCfoOJm5Fr9YuuS5lMxtDyFbpdNx9GPWQhjNbt8WYX475YZ7isKO_T4brtxYlI29-nilff_0SZPzvZx2Q-rZLjz5t8OeQVGBRIy_d_NXpbBo6BsexKdJSihQZ3lXySdMlFDGna3OIW2pS-KBzd4JtH0hX4kGRGVLcDmWS0OW2u-CuTib93vP9wCtdFLw55p-Zx0wT2kZa5fkOU4jeyOhEM1QRl1KECgImO0ywWEjGDaZ7gRUvBg5GQUt0WBgckeoiXcAxobGOlY41B4FET9pUT2sT8LZEmofbpDwhNTs7s2UhlDErJ-b079tnZM9GyAIB4-ekmq1yuECEz9SlC-03YhapFw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4QTdSTGjC-3YPeLI_tA9aLIQYCSokhkHDDfUwNESnB9qC_3tltgWg8eGvabNrsZPf7ZjvzfYRcQ6SMcbvRqZSR4_GaWVKa44oXvuHT0rOekWE_6Iy8x7E_LpDbdS8MANjiMyibS_svX8cqNUdlFeTmdZ9hgr6NuO_Xsm6tHXKTC2dWQkiW8XjQ7PZbSMSZqdxirJyP-mGfYtGjvU_C1XuzopG3cprIsvr6Jcn43w87IKVNnx59XiPQISnAvEhemumrVdrUdACWZVMkphRJMrzL2SeNF5BFna7sIe6ojuGDTu0ZtnkgbJEHRW5IcUMUsxldbPoL7ktk1G4NHzpO7qPgTDEDTRymq1DXwmjPN5hE_EZOx6ue9AMhuCfBZaLBOIu4YIHGhM818sUQgJZQ4w3muUdkax7P4ZjQSEVSRSoAjlRPmGRPKe0GdYFEDzdKcUKKZnYmi0wqY5JPzOnft6_IbmcY9ia9bv_pjOyZaBlYYME52UqWKVwg3ify0ob5G1_0rGA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+IEEE+International+Conference+on+Metrology+for+Extended+Reality%2C+Artificial+Intelligence+and+Neural+Engineering+%28MetroXRAINE%29&rft.atitle=Augmented+Reality+for+assembly+operation+training%3A+does+immersion+affect+the+recall+performance%3F&rft.au=Generosi%2C+Andrea&rft.au=Agostinelli%2C+Thomas&rft.au=Mengoni%2C+Maura&rft.au=Ceccacci%2C+Silvia&rft.date=2022-10-26&rft.pub=IEEE&rft.spage=58&rft.epage=63&rft_id=info:doi/10.1109%2FMetroXRAINE54828.2022.9967520&rft.externalDocID=9967520 |