Heart Arrhythmia Detection with Novel Approach H3-SAD

Research on signals collected from the human heart has been a core subject area as the heart displays a rich set of dynamical information that needs careful analysis for medical diagnosis and treatment. The acquisition of the electrical activity signals is a convenient way to analyze, control, evalu...

Full description

Saved in:
Bibliographic Details
Published inInternational Conference on Control, Decision and Information Technologies (Online) Vol. 1; pp. 390 - 395
Main Authors Cakal, Kursat, Efe, Mehmet Onder
Format Conference Proceeding
LanguageEnglish
Published IEEE 17.05.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Research on signals collected from the human heart has been a core subject area as the heart displays a rich set of dynamical information that needs careful analysis for medical diagnosis and treatment. The acquisition of the electrical activity signals is a convenient way to analyze, control, evaluate and understand the heart. Electrocardiography (ECG) measurements are used to categorize the heartbeat behaviors to achieve classification. ECG heartbeat signal classification methods range from classical signal processing to convolutional neural networks. Heterogeneous Harmonization of Heartbeat Signals for Arrhythmia Detection (H3-SAD) method based CNN is proposed in this study. H3-SAD method differs from other methods in the literature with its robust and tempered classification ability against heterogeneous spectrums of ECG Signal by targeting being a part of high mobility lifestyle. Literature studies have reasonable estimation rates for MIT-BIH Dataset but not for the heterogeneous acquisition of data in real-life applications. The key point that tempers our classification algorithm is applied dynamic augmentation details towards different signal sources and input values that adduct data to real-life, and heterogeneous augmentation-based CNN architecture.
AbstractList Research on signals collected from the human heart has been a core subject area as the heart displays a rich set of dynamical information that needs careful analysis for medical diagnosis and treatment. The acquisition of the electrical activity signals is a convenient way to analyze, control, evaluate and understand the heart. Electrocardiography (ECG) measurements are used to categorize the heartbeat behaviors to achieve classification. ECG heartbeat signal classification methods range from classical signal processing to convolutional neural networks. Heterogeneous Harmonization of Heartbeat Signals for Arrhythmia Detection (H3-SAD) method based CNN is proposed in this study. H3-SAD method differs from other methods in the literature with its robust and tempered classification ability against heterogeneous spectrums of ECG Signal by targeting being a part of high mobility lifestyle. Literature studies have reasonable estimation rates for MIT-BIH Dataset but not for the heterogeneous acquisition of data in real-life applications. The key point that tempers our classification algorithm is applied dynamic augmentation details towards different signal sources and input values that adduct data to real-life, and heterogeneous augmentation-based CNN architecture.
Author Efe, Mehmet Onder
Cakal, Kursat
Author_xml – sequence: 1
  givenname: Kursat
  surname: Cakal
  fullname: Cakal, Kursat
  email: kursat.cakal@roketsan.com.tr
  organization: University of Hacettepe,Computer Engineering Department,Çankaya,ANKARA,Turkey,06800
– sequence: 2
  givenname: Mehmet Onder
  surname: Efe
  fullname: Efe, Mehmet Onder
  email: onderefe@gmail.com
  organization: University of Hacettepe,Computer Engineering Department,Çankaya,ANKARA,Turkey,06800
BookMark eNotj99KwzAchaMouM09gRfmBVrzy9_lsrRqB0MvnODdSJOURra2pEHZ21twV-fi8B2-s0Q3_dB7hB6B5ABEP5VDtd0LAQJySijN9YZwIOwKLUFKwbUk6usaLahQMmNCiDu0nqZvQggDTWZggUTtTUy4iLE7p-4UDK588jaFoce_IXX4bfjxR1yMYxyM7XDNso-iuke3rTlOfn3JFfp8ed6XdbZ7f92WxS4LwFjKQHI-CzlnHdDGEAFa60ZwKRQ3nHnnmlaBl5RKZSm3Xlo316Cc2rTGtmyFHv53g_f-MMZwMvF8uLxkf92bR6A
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CoDIT55151.2022.9804103
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 166549607X
9781665496070
EISSN 2576-3555
EndPage 395
ExternalDocumentID 9804103
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i133t-1644041ddcd12ba051999b546574a43eddbf71e62267c24ce6cdb5417d78facf3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:14:06 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i133t-1644041ddcd12ba051999b546574a43eddbf71e62267c24ce6cdb5417d78facf3
PageCount 6
ParticipantIDs ieee_primary_9804103
PublicationCentury 2000
PublicationDate 2022-May-17
PublicationDateYYYYMMDD 2022-05-17
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-May-17
  day: 17
PublicationDecade 2020
PublicationTitle International Conference on Control, Decision and Information Technologies (Online)
PublicationTitleAbbrev CODIT
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003190022
Score 1.8052454
Snippet Research on signals collected from the human heart has been a core subject area as the heart displays a rich set of dynamical information that needs careful...
SourceID ieee
SourceType Publisher
StartPage 390
SubjectTerms Classification algorithms
Electrocardiography
Heart
Heart beat
Heuristic algorithms
Pattern classification
Signal processing
Title Heart Arrhythmia Detection with Novel Approach H3-SAD
URI https://ieeexplore.ieee.org/document/9804103
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEF1qT56qtuI3e_DopmaTTbrH0Fqi0CLYQm9lPya0qImUVNBf706aVhQP3kLCkmV2kzczO_MeIdcgJCDLNzNcGxaqWDPNpWbSisxBuuHWYr_zaByl0_BhJmYNcrPrhQGAqvgMPLyszvJtYdaYKutKJMtBas89F7hterV2-RS3lRCP6hIu_1Z2-8XgfuIcAoFhIOdePfqHjEqFIsMWGW3fvykeefbWpfbM5y9qxv9O8IB0vvv16OMOiQ5JA_Ij0toKNtD6-20Tkbp9XdJktVp8lIvXpaIDKKtarJxiQpaOi3d4oUnNM07TgD0lgw6ZDu8m_ZTVugls6SLOkrkIKHTzsNZYn2uFTpqUGlXP41CFAVirs9iHyHleseGhgchY99iPbdzLlMmCY9LMixxOCAVnSC2F7Cmp3C_VKB4IrUSoVYQ65eKUtNEK87cNNca8NsDZ37fPyT6uBB6--_EFaZarNVw6TC_1VbWYXxh9n6g
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8JAEN0QPOgJFYzf7sGjW-x2t2WPBCRFgZgICTeyXw1EbQ0pJvrr3SkFo_HgrWnTZDK77ZuZnXkPoWvLhQWWb6Kp0oTJSBFFhSLC8MRBuqbGwLzzcBTGE3Y_5dMKutnOwlhri-Yz68FlcZZvMr2CUllTAFkOUHvuONzndD2tta2ouM0EiFQ2cfm3otnJuv2xCwk4JIKUeuX7P4RUChzp1dBwY8G6feTZW-XK05-_yBn_a-I-anxP7OHHLRYdoIpND1FtI9mAyy-4jnjsdnaO28vl_COfvy4k7tq86MZKMZRk8Sh7ty-4XTKN4zggT-1uA016d-NOTErlBLJwOWdOXA7EnB3GaONTJSFME0KB7nnEJAusMSqJfBu62CvSlGkbauMe-5GJWonUSXCEqmmW2mOErXOkEly0pJDup6olDbiSnCkZglI5P0F18MLsbU2OMSsdcPr37Su0G4-Hg9mgP3o4Q3uwKnAU70fnqJovV_bCIXyuLouF_QKj-qLy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=International+Conference+on+Control%2C+Decision+and+Information+Technologies+%28Online%29&rft.atitle=Heart+Arrhythmia+Detection+with+Novel+Approach+H3-SAD&rft.au=Cakal%2C+Kursat&rft.au=Efe%2C+Mehmet+Onder&rft.date=2022-05-17&rft.pub=IEEE&rft.eissn=2576-3555&rft.volume=1&rft.spage=390&rft.epage=395&rft_id=info:doi/10.1109%2FCoDIT55151.2022.9804103&rft.externalDocID=9804103