N-body problem solution with composition numerical integration methods
The subject of this paper is the experimental study of the composition numerical integration methods while solving the N-body problem. Various composition methods based on symmetric second order Verlet method are considered. Step size control algorithm for these methods is described. The principles...
Saved in:
Published in | 2016 XIX IEEE International Conference on Soft Computing and Measurements (SCM) pp. 196 - 198 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.05.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The subject of this paper is the experimental study of the composition numerical integration methods while solving the N-body problem. Various composition methods based on symmetric second order Verlet method are considered. Step size control algorithm for these methods is described. The principles for experimental estimation of the time reversibility for composition methods with fixed and adaptive integration steps is described. The results six-body problem simulation by composition method of accuracy order 6 and Runge-Kutta 45 method are compared. Conclusions about the effectiveness of proposed algorithms for long-term simulation of the chosen problem are given. Study shows that semi-implicit composition methods have greater numerical stability for N-body problem simulation than the explicit Runge-Kutta methods. It is shown that the semi-implicit composition methods with fixed integration step are time-reversible, but they lose this property in a case of adaptive step size. |
---|---|
AbstractList | The subject of this paper is the experimental study of the composition numerical integration methods while solving the N-body problem. Various composition methods based on symmetric second order Verlet method are considered. Step size control algorithm for these methods is described. The principles for experimental estimation of the time reversibility for composition methods with fixed and adaptive integration steps is described. The results six-body problem simulation by composition method of accuracy order 6 and Runge-Kutta 45 method are compared. Conclusions about the effectiveness of proposed algorithms for long-term simulation of the chosen problem are given. Study shows that semi-implicit composition methods have greater numerical stability for N-body problem simulation than the explicit Runge-Kutta methods. It is shown that the semi-implicit composition methods with fixed integration step are time-reversible, but they lose this property in a case of adaptive step size. |
Author | Krasilnikov, A. V. Goryainov, S. V. Andreev, V. S. |
Author_xml | – sequence: 1 givenname: V. S. surname: Andreev fullname: Andreev, V. S. email: valery.s.andreev@gmail.com organization: Comput.-Aided Design Dept., St.-Petersburg Electrotech. Univ. "LETI", St. Petersburg, Russia – sequence: 2 givenname: S. V. surname: Goryainov fullname: Goryainov, S. V. organization: Comput.-Aided Design Dept., St.-Petersburg Electrotech. Univ. "LETI", St. Petersburg, Russia – sequence: 3 givenname: A. V. surname: Krasilnikov fullname: Krasilnikov, A. V. organization: Comput.-Aided Design Dept., St.-Petersburg Electrotech. Univ. "LETI", St. Petersburg, Russia |
BookMark | eNotj0FLwzAYhiPowU3vgpf8gdZ8SdMsRylOhakH9TyS9IsLtElJM2T_Xtl2euB54IV3QS5jikjIHbAagOmHz-6t5gzaWknQircXZAFNq8RKg26vyfq9sqk_0CknO-BI5zTsS0iR_oayoy6NU5rDUcT9iDk4M9AQC_5kc7Qjll3q5xty5c0w4-2ZS_K9fvrqXqrNx_Nr97ipAnBRKseNt144sM4z2fRSghAenJENKquZUF4Z52HFNPYeuJQcOKr_wKS1RokluT_tBkTcTjmMJh-252viD9bNSUI |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/SCM.2016.7519726 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 1467389196 9781467389198 |
EndPage | 198 |
ExternalDocumentID | 7519726 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i123t-c2afbf3c1bcf054d55133f1ca54e7b9037f7acf1809edf1255212e790305bba73 |
IEDL.DBID | RIE |
IngestDate | Thu Jun 29 18:37:33 EDT 2023 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i123t-c2afbf3c1bcf054d55133f1ca54e7b9037f7acf1809edf1255212e790305bba73 |
PageCount | 3 |
ParticipantIDs | ieee_primary_7519726 |
PublicationCentury | 2000 |
PublicationDate | 20160501 |
PublicationDateYYYYMMDD | 2016-05-01 |
PublicationDate_xml | – month: 05 year: 2016 text: 20160501 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | 2016 XIX IEEE International Conference on Soft Computing and Measurements (SCM) |
PublicationTitleAbbrev | SCM |
PublicationYear | 2016 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.6044854 |
Snippet | The subject of this paper is the experimental study of the composition numerical integration methods while solving the N-body problem. Various composition... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 196 |
SubjectTerms | Adaptation models adaptive stepsize Algorithm design and analysis composition method dynamical systems simulation Earth gravitational N-body problem Heuristic algorithms Mathematical model Numerical models reversibitity Stability analysis Verlet method |
Title | N-body problem solution with composition numerical integration methods |
URI | https://ieeexplore.ieee.org/document/7519726 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEB3anjyptOI3e_Dops3nJudiKEKKoIXeSnYzA6Kkosmh_np38lFRPHgLS8JudrO8zcx7bwBuMPHcInZDqXLyZODpXMYB-RJjCgvlaotgHIfMltFiFdyvw_UAbvdaGERsyGfo8GWTyy-2puZQ2VSxytKLhjC0P26tVqvPPM6S6eM8Y6pW5HS3_aiX0sBFeghZ31HLEnlx6ko75vOXB-N_R3IEk29hnnjYQ84xDLAcQ7qUelvsRFcbRvRfk-AYq2DOeEfMEmXd5mdeRe8Swa1tEemPCazSu6f5QnblEeSzhZtKGi8nTb5xtSF78CqaUi3kmjwMUOlk5itSuSE26MKC7EGGZbqoEt7iWufKP4FRuS3xFEQcKZ8o8ShGi2psCWjsVldBZNA-a9wzGPMcbN5aB4xN9_rnfzdfwAGvQ0sLvIRR9V7jlYXuSl83a_YF2sucfQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8NAFH7UetCTSivuzsGjk3ayTXIulqpNEWyht5KZvAFRUtHkoL_eeVkqigdvYUjIMhm-4b1vAbjC2BVZJAIuU-Ny31Upj3zjcYxMkEmhLIJRHTKZhZOFf7cMlh243mhhELEin6FDh1UvP1vrkkplA0kqSzfcgm2L-4Go1Vpt73EYDx5HCZG1Qqc58UdiSgUY4z1I2lvVPJFnpyyUoz9_uTD-91n2of8tzWMPG9A5gA7mPRjPuFpnH6xJh2Ht_8SoysqINd5Qs1he1h2aF9b6RNBoHSP93ofF-GY-mvAmIIE_WcApuHZTo4ynhdLGbr2yKqzFCJ0GPkoVDz1pZKoNWXRhZuxWhoS6KGNa5Eql0juEbr7O8QhYFErPmNg1EVpcI1NAbRe79EON9lotjqFH32D1WntgrJrXP_l7-BJ2JvNkuprezu5PYZfmpCYJnkG3eCvx3AJ5oS6q-fsCNAKfxg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+XIX+IEEE+International+Conference+on+Soft+Computing+and+Measurements+%28SCM%29&rft.atitle=N-body+problem+solution+with+composition+numerical+integration+methods&rft.au=Andreev%2C+V.+S.&rft.au=Goryainov%2C+S.+V.&rft.au=Krasilnikov%2C+A.+V.&rft.date=2016-05-01&rft.pub=IEEE&rft.spage=196&rft.epage=198&rft_id=info:doi/10.1109%2FSCM.2016.7519726&rft.externalDocID=7519726 |