N-body problem solution with composition numerical integration methods

The subject of this paper is the experimental study of the composition numerical integration methods while solving the N-body problem. Various composition methods based on symmetric second order Verlet method are considered. Step size control algorithm for these methods is described. The principles...

Full description

Saved in:
Bibliographic Details
Published in2016 XIX IEEE International Conference on Soft Computing and Measurements (SCM) pp. 196 - 198
Main Authors Andreev, V. S., Goryainov, S. V., Krasilnikov, A. V.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.05.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The subject of this paper is the experimental study of the composition numerical integration methods while solving the N-body problem. Various composition methods based on symmetric second order Verlet method are considered. Step size control algorithm for these methods is described. The principles for experimental estimation of the time reversibility for composition methods with fixed and adaptive integration steps is described. The results six-body problem simulation by composition method of accuracy order 6 and Runge-Kutta 45 method are compared. Conclusions about the effectiveness of proposed algorithms for long-term simulation of the chosen problem are given. Study shows that semi-implicit composition methods have greater numerical stability for N-body problem simulation than the explicit Runge-Kutta methods. It is shown that the semi-implicit composition methods with fixed integration step are time-reversible, but they lose this property in a case of adaptive step size.
AbstractList The subject of this paper is the experimental study of the composition numerical integration methods while solving the N-body problem. Various composition methods based on symmetric second order Verlet method are considered. Step size control algorithm for these methods is described. The principles for experimental estimation of the time reversibility for composition methods with fixed and adaptive integration steps is described. The results six-body problem simulation by composition method of accuracy order 6 and Runge-Kutta 45 method are compared. Conclusions about the effectiveness of proposed algorithms for long-term simulation of the chosen problem are given. Study shows that semi-implicit composition methods have greater numerical stability for N-body problem simulation than the explicit Runge-Kutta methods. It is shown that the semi-implicit composition methods with fixed integration step are time-reversible, but they lose this property in a case of adaptive step size.
Author Krasilnikov, A. V.
Goryainov, S. V.
Andreev, V. S.
Author_xml – sequence: 1
  givenname: V. S.
  surname: Andreev
  fullname: Andreev, V. S.
  email: valery.s.andreev@gmail.com
  organization: Comput.-Aided Design Dept., St.-Petersburg Electrotech. Univ. "LETI", St. Petersburg, Russia
– sequence: 2
  givenname: S. V.
  surname: Goryainov
  fullname: Goryainov, S. V.
  organization: Comput.-Aided Design Dept., St.-Petersburg Electrotech. Univ. "LETI", St. Petersburg, Russia
– sequence: 3
  givenname: A. V.
  surname: Krasilnikov
  fullname: Krasilnikov, A. V.
  organization: Comput.-Aided Design Dept., St.-Petersburg Electrotech. Univ. "LETI", St. Petersburg, Russia
BookMark eNotj0FLwzAYhiPowU3vgpf8gdZ8SdMsRylOhakH9TyS9IsLtElJM2T_Xtl2euB54IV3QS5jikjIHbAagOmHz-6t5gzaWknQircXZAFNq8RKg26vyfq9sqk_0CknO-BI5zTsS0iR_oayoy6NU5rDUcT9iDk4M9AQC_5kc7Qjll3q5xty5c0w4-2ZS_K9fvrqXqrNx_Nr97ipAnBRKseNt144sM4z2fRSghAenJENKquZUF4Z52HFNPYeuJQcOKr_wKS1RokluT_tBkTcTjmMJh-252viD9bNSUI
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/SCM.2016.7519726
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1467389196
9781467389198
EndPage 198
ExternalDocumentID 7519726
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i123t-c2afbf3c1bcf054d55133f1ca54e7b9037f7acf1809edf1255212e790305bba73
IEDL.DBID RIE
IngestDate Thu Jun 29 18:37:33 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i123t-c2afbf3c1bcf054d55133f1ca54e7b9037f7acf1809edf1255212e790305bba73
PageCount 3
ParticipantIDs ieee_primary_7519726
PublicationCentury 2000
PublicationDate 20160501
PublicationDateYYYYMMDD 2016-05-01
PublicationDate_xml – month: 05
  year: 2016
  text: 20160501
  day: 01
PublicationDecade 2010
PublicationTitle 2016 XIX IEEE International Conference on Soft Computing and Measurements (SCM)
PublicationTitleAbbrev SCM
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.6044854
Snippet The subject of this paper is the experimental study of the composition numerical integration methods while solving the N-body problem. Various composition...
SourceID ieee
SourceType Publisher
StartPage 196
SubjectTerms Adaptation models
adaptive stepsize
Algorithm design and analysis
composition method
dynamical systems simulation
Earth
gravitational N-body problem
Heuristic algorithms
Mathematical model
Numerical models
reversibitity
Stability analysis
Verlet method
Title N-body problem solution with composition numerical integration methods
URI https://ieeexplore.ieee.org/document/7519726
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEB3anjyptOI3e_Dops3nJudiKEKKoIXeSnYzA6Kkosmh_np38lFRPHgLS8JudrO8zcx7bwBuMPHcInZDqXLyZODpXMYB-RJjCgvlaotgHIfMltFiFdyvw_UAbvdaGERsyGfo8GWTyy-2puZQ2VSxytKLhjC0P26tVqvPPM6S6eM8Y6pW5HS3_aiX0sBFeghZ31HLEnlx6ko75vOXB-N_R3IEk29hnnjYQ84xDLAcQ7qUelvsRFcbRvRfk-AYq2DOeEfMEmXd5mdeRe8Swa1tEemPCazSu6f5QnblEeSzhZtKGi8nTb5xtSF78CqaUi3kmjwMUOlk5itSuSE26MKC7EGGZbqoEt7iWufKP4FRuS3xFEQcKZ8o8ShGi2psCWjsVldBZNA-a9wzGPMcbN5aB4xN9_rnfzdfwAGvQ0sLvIRR9V7jlYXuSl83a_YF2sucfQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8NAFH7UetCTSivuzsGjk3ayTXIulqpNEWyht5KZvAFRUtHkoL_eeVkqigdvYUjIMhm-4b1vAbjC2BVZJAIuU-Ny31Upj3zjcYxMkEmhLIJRHTKZhZOFf7cMlh243mhhELEin6FDh1UvP1vrkkplA0kqSzfcgm2L-4Go1Vpt73EYDx5HCZG1Qqc58UdiSgUY4z1I2lvVPJFnpyyUoz9_uTD-91n2of8tzWMPG9A5gA7mPRjPuFpnH6xJh2Ht_8SoysqINd5Qs1he1h2aF9b6RNBoHSP93ofF-GY-mvAmIIE_WcApuHZTo4ynhdLGbr2yKqzFCJ0GPkoVDz1pZKoNWXRhZuxWhoS6KGNa5Eql0juEbr7O8QhYFErPmNg1EVpcI1NAbRe79EON9lotjqFH32D1WntgrJrXP_l7-BJ2JvNkuprezu5PYZfmpCYJnkG3eCvx3AJ5oS6q-fsCNAKfxg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+XIX+IEEE+International+Conference+on+Soft+Computing+and+Measurements+%28SCM%29&rft.atitle=N-body+problem+solution+with+composition+numerical+integration+methods&rft.au=Andreev%2C+V.+S.&rft.au=Goryainov%2C+S.+V.&rft.au=Krasilnikov%2C+A.+V.&rft.date=2016-05-01&rft.pub=IEEE&rft.spage=196&rft.epage=198&rft_id=info:doi/10.1109%2FSCM.2016.7519726&rft.externalDocID=7519726