Android malware analysis approach based on control flow graphs and machine learning algorithms

Smart devices from smartphones to wearable computers today have been used in many purposes. These devices run various mobile operating systems like Android, iOS, Symbian, Windows Mobile, etc. Since the mobile devices are widely used and contain personal information, they are subject to security atta...

Full description

Saved in:
Bibliographic Details
Published in2016 4th International Symposium on Digital Forensic and Security (ISDFS) pp. 26 - 31
Main Authors Atici, Mehmet Ali, Sagiroglu, Seref, Dogru, Ibrahim Alper
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.04.2016
Subjects
Online AccessGet full text
DOI10.1109/ISDFS.2016.7473512

Cover

Abstract Smart devices from smartphones to wearable computers today have been used in many purposes. These devices run various mobile operating systems like Android, iOS, Symbian, Windows Mobile, etc. Since the mobile devices are widely used and contain personal information, they are subject to security attacks by mobile malware applications. In this work we propose a new approach based on control flow graphs and machine learning algorithms for static Android malware analysis. Experimental results have shown that the proposed approach achieves a high classification accuracy of 96.26% in general and high detection rate of 99.15% for DroidKungfu malware families which are very harmful and difficult to detect because of encrypting the root exploits, by reducing data dimension significantly for real time analysis.
AbstractList Smart devices from smartphones to wearable computers today have been used in many purposes. These devices run various mobile operating systems like Android, iOS, Symbian, Windows Mobile, etc. Since the mobile devices are widely used and contain personal information, they are subject to security attacks by mobile malware applications. In this work we propose a new approach based on control flow graphs and machine learning algorithms for static Android malware analysis. Experimental results have shown that the proposed approach achieves a high classification accuracy of 96.26% in general and high detection rate of 99.15% for DroidKungfu malware families which are very harmful and difficult to detect because of encrypting the root exploits, by reducing data dimension significantly for real time analysis.
Author Sagiroglu, Seref
Dogru, Ibrahim Alper
Atici, Mehmet Ali
Author_xml – sequence: 1
  givenname: Mehmet Ali
  surname: Atici
  fullname: Atici, Mehmet Ali
  email: mehmetaliatici34@gmail.com
  organization: Dept. of Comp. Eng., Gazi Univ., Ankara, Turkey
– sequence: 2
  givenname: Seref
  surname: Sagiroglu
  fullname: Sagiroglu, Seref
  email: ss@gazi.edu.tr
  organization: Dept. of Comp. Eng., Gazi Univ., Ankara, Turkey
– sequence: 3
  givenname: Ibrahim Alper
  surname: Dogru
  fullname: Dogru, Ibrahim Alper
  email: iadogru@gazi.edu.tr
  organization: Dept. of Comp. Eng., Gazi Univ., Ankara, Turkey
BookMark eNotj8FOwzAQRI0EB1r4Abj4BxqyduLYx6pQqFSJQ-FKtXE2iSXHjpxIVf-eInqaObx50izYbYiBGHuCPAPIzcvu8Lo9ZCIHlVVFJUsQN2wBhaqk0ao09-xnHZoUXcMH9CdMxDGgP09u4jiOKaLteY0TNTwGbmOYU_S89fHEu4Rjf6HC39T2LhD3hCm40HH0XUxu7ofpgd216Cd6vOaSfW_fvjYfq_3n-26z3q8cCDmvakUEALbSLVolpVZaNVaREE1e1Hnb5kLVxihqq9pKDVCIytiiqDVcSinlkj3_ex0RHcfkBkzn4_Wy_AVkM1Fk
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ISDFS.2016.7473512
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1467398659
9781467398657
EndPage 31
ExternalDocumentID 7473512
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i123t-b6ee111c78fac6338686dc6e22d04b0ff026b996ef7bc38114279c44b81279533
IEDL.DBID RIE
IngestDate Thu Jun 29 18:37:13 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i123t-b6ee111c78fac6338686dc6e22d04b0ff026b996ef7bc38114279c44b81279533
PageCount 6
ParticipantIDs ieee_primary_7473512
PublicationCentury 2000
PublicationDate 20160401
PublicationDateYYYYMMDD 2016-04-01
PublicationDate_xml – month: 04
  year: 2016
  text: 20160401
  day: 01
PublicationDecade 2010
PublicationTitle 2016 4th International Symposium on Digital Forensic and Security (ISDFS)
PublicationTitleAbbrev ISDFS
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.6363515
Snippet Smart devices from smartphones to wearable computers today have been used in many purposes. These devices run various mobile operating systems like Android,...
SourceID ieee
SourceType Publisher
StartPage 26
SubjectTerms Android
control flow graphs
Decision support systems
Flow graphs
machine learning
Malware
Mobile communication
mobile security
Security
static analysis
Title Android malware analysis approach based on control flow graphs and machine learning algorithms
URI https://ieeexplore.ieee.org/document/7473512
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8MwGA5zJ08qm_hNDh5N161Z0p7VMYWJMAc7OfLxZg63dsyOgb_evG03UTx4KyEhJQl5eNvng5Br4xIMEomY8-eBcd1WTMUuYQqsUBwiFUvUOw-eRH_EH8fdcY3c7LQwAFCQzyDAx-Jfvs3MGj-VtSTm5GKk8J4_ZqVWa6uDCZPWw_CuN0Sylgiqjj8SUwrA6B2QwXaqkifyHqxzHZjPXy6M_32XQ9L8lubR5x3oHJEapA3yirTEbGbpQs03agVUVVYjdGsZThGtLM1SWnHTqZtnG1rYVfteKQ5FViXQKkZiStV8mq1m-dvio0lGvfuX2z6rghPYzANRzrQA8HeYkbFTRvgiVMTCGgGdjg25Dp3zhZf2hQ44qY2H7DbvyMRwrj3aS-SbHpN6mqVwQqix3A_qGgPacZBRbLQNQ4AIpIkUD09JA9dmsiy9MSbVspz93XxO9nF_SubLBannqzVcelDP9VWxm1_TEKY1
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8IwGG4IHvSkBozf9uDRjsFKu51VAgrEBEg4SfrxFgmwGRwh8dfbbgOj8eCtWdpsaZs-edfnA6FbZSIXJBIQY_cDobIuiAhNRARoJigEIuRO79zrs_aIPo2b4xK622lhACAjn4Hnmtldvk7U2v0qq3GXk-sihfcs7tNmrtbaKmH8qNYZPLQGjq7FvKLrj8yUDDJah6i3fVnOFJl761R66vOXD-N_v-YIVb_FefhlBzvHqARxBb06YmIy03gpFhuxAiwKsxG8NQ3HDq80TmJcsNOxWSQbnBlW216xG-p4lYCLIIkpFotpspqlb8uPKhq1Hof3bVJEJ5CZhaKUSAZgTzHFQyMUs2UoC5lWDBoN7VPpG2NLL2lLHTBcKgvaddrgkaJUWrznjnF6gspxEsMpwkpTO6ipFEhDgQehktr3AQLgKhDUP0MVNzeT99wdY1JMy_nfj2_QfnvY6066nf7zBTpwa5XzYC5ROV2t4cpCfCqvs5X9ArMuqYI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+4th+International+Symposium+on+Digital+Forensic+and+Security+%28ISDFS%29&rft.atitle=Android+malware+analysis+approach+based+on+control+flow+graphs+and+machine+learning+algorithms&rft.au=Atici%2C+Mehmet+Ali&rft.au=Sagiroglu%2C+Seref&rft.au=Dogru%2C+Ibrahim+Alper&rft.date=2016-04-01&rft.pub=IEEE&rft.spage=26&rft.epage=31&rft_id=info:doi/10.1109%2FISDFS.2016.7473512&rft.externalDocID=7473512