Android malware analysis approach based on control flow graphs and machine learning algorithms
Smart devices from smartphones to wearable computers today have been used in many purposes. These devices run various mobile operating systems like Android, iOS, Symbian, Windows Mobile, etc. Since the mobile devices are widely used and contain personal information, they are subject to security atta...
Saved in:
Published in | 2016 4th International Symposium on Digital Forensic and Security (ISDFS) pp. 26 - 31 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.04.2016
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/ISDFS.2016.7473512 |
Cover
Abstract | Smart devices from smartphones to wearable computers today have been used in many purposes. These devices run various mobile operating systems like Android, iOS, Symbian, Windows Mobile, etc. Since the mobile devices are widely used and contain personal information, they are subject to security attacks by mobile malware applications. In this work we propose a new approach based on control flow graphs and machine learning algorithms for static Android malware analysis. Experimental results have shown that the proposed approach achieves a high classification accuracy of 96.26% in general and high detection rate of 99.15% for DroidKungfu malware families which are very harmful and difficult to detect because of encrypting the root exploits, by reducing data dimension significantly for real time analysis. |
---|---|
AbstractList | Smart devices from smartphones to wearable computers today have been used in many purposes. These devices run various mobile operating systems like Android, iOS, Symbian, Windows Mobile, etc. Since the mobile devices are widely used and contain personal information, they are subject to security attacks by mobile malware applications. In this work we propose a new approach based on control flow graphs and machine learning algorithms for static Android malware analysis. Experimental results have shown that the proposed approach achieves a high classification accuracy of 96.26% in general and high detection rate of 99.15% for DroidKungfu malware families which are very harmful and difficult to detect because of encrypting the root exploits, by reducing data dimension significantly for real time analysis. |
Author | Sagiroglu, Seref Dogru, Ibrahim Alper Atici, Mehmet Ali |
Author_xml | – sequence: 1 givenname: Mehmet Ali surname: Atici fullname: Atici, Mehmet Ali email: mehmetaliatici34@gmail.com organization: Dept. of Comp. Eng., Gazi Univ., Ankara, Turkey – sequence: 2 givenname: Seref surname: Sagiroglu fullname: Sagiroglu, Seref email: ss@gazi.edu.tr organization: Dept. of Comp. Eng., Gazi Univ., Ankara, Turkey – sequence: 3 givenname: Ibrahim Alper surname: Dogru fullname: Dogru, Ibrahim Alper email: iadogru@gazi.edu.tr organization: Dept. of Comp. Eng., Gazi Univ., Ankara, Turkey |
BookMark | eNotj8FOwzAQRI0EB1r4Abj4BxqyduLYx6pQqFSJQ-FKtXE2iSXHjpxIVf-eInqaObx50izYbYiBGHuCPAPIzcvu8Lo9ZCIHlVVFJUsQN2wBhaqk0ao09-xnHZoUXcMH9CdMxDGgP09u4jiOKaLteY0TNTwGbmOYU_S89fHEu4Rjf6HC39T2LhD3hCm40HH0XUxu7ofpgd216Cd6vOaSfW_fvjYfq_3n-26z3q8cCDmvakUEALbSLVolpVZaNVaREE1e1Hnb5kLVxihqq9pKDVCIytiiqDVcSinlkj3_ex0RHcfkBkzn4_Wy_AVkM1Fk |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ISDFS.2016.7473512 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 1467398659 9781467398657 |
EndPage | 31 |
ExternalDocumentID | 7473512 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i123t-b6ee111c78fac6338686dc6e22d04b0ff026b996ef7bc38114279c44b81279533 |
IEDL.DBID | RIE |
IngestDate | Thu Jun 29 18:37:13 EDT 2023 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i123t-b6ee111c78fac6338686dc6e22d04b0ff026b996ef7bc38114279c44b81279533 |
PageCount | 6 |
ParticipantIDs | ieee_primary_7473512 |
PublicationCentury | 2000 |
PublicationDate | 20160401 |
PublicationDateYYYYMMDD | 2016-04-01 |
PublicationDate_xml | – month: 04 year: 2016 text: 20160401 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | 2016 4th International Symposium on Digital Forensic and Security (ISDFS) |
PublicationTitleAbbrev | ISDFS |
PublicationYear | 2016 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.6363515 |
Snippet | Smart devices from smartphones to wearable computers today have been used in many purposes. These devices run various mobile operating systems like Android,... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 26 |
SubjectTerms | Android control flow graphs Decision support systems Flow graphs machine learning Malware Mobile communication mobile security Security static analysis |
Title | Android malware analysis approach based on control flow graphs and machine learning algorithms |
URI | https://ieeexplore.ieee.org/document/7473512 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8MwGA5zJ08qm_hNDh5N161Z0p7VMYWJMAc7OfLxZg63dsyOgb_evG03UTx4KyEhJQl5eNvng5Br4xIMEomY8-eBcd1WTMUuYQqsUBwiFUvUOw-eRH_EH8fdcY3c7LQwAFCQzyDAx-Jfvs3MGj-VtSTm5GKk8J4_ZqVWa6uDCZPWw_CuN0Sylgiqjj8SUwrA6B2QwXaqkifyHqxzHZjPXy6M_32XQ9L8lubR5x3oHJEapA3yirTEbGbpQs03agVUVVYjdGsZThGtLM1SWnHTqZtnG1rYVfteKQ5FViXQKkZiStV8mq1m-dvio0lGvfuX2z6rghPYzANRzrQA8HeYkbFTRvgiVMTCGgGdjg25Dp3zhZf2hQ44qY2H7DbvyMRwrj3aS-SbHpN6mqVwQqix3A_qGgPacZBRbLQNQ4AIpIkUD09JA9dmsiy9MSbVspz93XxO9nF_SubLBannqzVcelDP9VWxm1_TEKY1 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8IwGG4IHvSkBozf9uDRjsFKu51VAgrEBEg4SfrxFgmwGRwh8dfbbgOj8eCtWdpsaZs-edfnA6FbZSIXJBIQY_cDobIuiAhNRARoJigEIuRO79zrs_aIPo2b4xK622lhACAjn4Hnmtldvk7U2v0qq3GXk-sihfcs7tNmrtbaKmH8qNYZPLQGjq7FvKLrj8yUDDJah6i3fVnOFJl761R66vOXD-N_v-YIVb_FefhlBzvHqARxBb06YmIy03gpFhuxAiwKsxG8NQ3HDq80TmJcsNOxWSQbnBlW216xG-p4lYCLIIkpFotpspqlb8uPKhq1Hof3bVJEJ5CZhaKUSAZgTzHFQyMUs2UoC5lWDBoN7VPpG2NLL2lLHTBcKgvaddrgkaJUWrznjnF6gspxEsMpwkpTO6ipFEhDgQehktr3AQLgKhDUP0MVNzeT99wdY1JMy_nfj2_QfnvY6066nf7zBTpwa5XzYC5ROV2t4cpCfCqvs5X9ArMuqYI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+4th+International+Symposium+on+Digital+Forensic+and+Security+%28ISDFS%29&rft.atitle=Android+malware+analysis+approach+based+on+control+flow+graphs+and+machine+learning+algorithms&rft.au=Atici%2C+Mehmet+Ali&rft.au=Sagiroglu%2C+Seref&rft.au=Dogru%2C+Ibrahim+Alper&rft.date=2016-04-01&rft.pub=IEEE&rft.spage=26&rft.epage=31&rft_id=info:doi/10.1109%2FISDFS.2016.7473512&rft.externalDocID=7473512 |