Feature extraction and LDA based classification of lung nodules in chest CT scan images
This paper presents a computational based system for detection and classification of lung nodules from chest CT scan images. In this study we consider the case of a primary lung cancer. Optimal thresholding and gray level characteristics are used for segmentation of lung nodules from the lung volume...
Saved in:
Published in | 2015 International Conference on Advances in Computing, Communications and Informatics (ICACCI) pp. 1189 - 1193 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.08.2015
|
Subjects | |
Online Access | Get full text |
ISBN | 9781479987900 1479987905 |
DOI | 10.1109/ICACCI.2015.7275773 |
Cover
Abstract | This paper presents a computational based system for detection and classification of lung nodules from chest CT scan images. In this study we consider the case of a primary lung cancer. Optimal thresholding and gray level characteristics are used for segmentation of lung nodules from the lung volume area. After detection of lung mass tissue, geometrical features are extracted. Simple image processing techniques like filtering, morphological operation etc. are used on CT images collected from Cancer Imaging Archive database to make the study effective and efficient. To distinguish between the nodule and normal pulmonary structure, geometrical features are merged with LDA (linear discriminate analysis) classifier. GLCM technique is used for calculating statistical features. The results show that proposed methodology successfully detects and provides prior classification of nodules and normal anatomy structure effectively, based on geometrical, statistical and gray level characteristics. Results also provide 84 % accuracy, 97.14 % sensitivity and 53.33 % specificity. |
---|---|
AbstractList | This paper presents a computational based system for detection and classification of lung nodules from chest CT scan images. In this study we consider the case of a primary lung cancer. Optimal thresholding and gray level characteristics are used for segmentation of lung nodules from the lung volume area. After detection of lung mass tissue, geometrical features are extracted. Simple image processing techniques like filtering, morphological operation etc. are used on CT images collected from Cancer Imaging Archive database to make the study effective and efficient. To distinguish between the nodule and normal pulmonary structure, geometrical features are merged with LDA (linear discriminate analysis) classifier. GLCM technique is used for calculating statistical features. The results show that proposed methodology successfully detects and provides prior classification of nodules and normal anatomy structure effectively, based on geometrical, statistical and gray level characteristics. Results also provide 84 % accuracy, 97.14 % sensitivity and 53.33 % specificity. |
Author | Aggarwal, Taruna Kalra, Kunal Furqan, Asna |
Author_xml | – sequence: 1 givenname: Taruna surname: Aggarwal fullname: Aggarwal, Taruna email: taruna.aggarwal.27@gmail.com organization: Dept. of Electron. & Commun. Eng, USICT, Delhi, India – sequence: 2 givenname: Asna surname: Furqan fullname: Furqan, Asna email: asnafurqan@gmail.com organization: Dept. of Electron. & Commun. Eng, USICT, Delhi, India – sequence: 3 givenname: Kunal surname: Kalra fullname: Kalra, Kunal email: kunalkalra21@gmail.com organization: Dept. of Electron. & Commun. Eng, USICT, Delhi, India |
BookMark | eNpVj89KAzEYxCPqQWufoJe8wNb82ZjkWFarhQUvFY_lS_KlBtasbHZB395Fe-lpGAZm5ndLrnKfkZAVZ2vOmb3fNZum2a0F42qthVZaywuytNrwWltrtBX15Zln7Ia8bxHGaUCK3-MAfkx9ppADbR831EHBQH0HpaSYPPyFfaTdlI8092HqsNCUqf_AMtJmT4uHTNMnHLHckesIXcHlSRfkbfu0b16q9vV5PtpWiQs5ViAeDABj3hrAGcIACxxj0NF744LRPPpauqAsci2kUsp44Rg6ZRCCs3JBVv-9CREPX8O8PvwcTvjyF1EhUpc |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICACCI.2015.7275773 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9781479987924 1479987921 |
EndPage | 1193 |
ExternalDocumentID | 7275773 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i123t-a268aa00c98ae1098a0d1efd7fcc8bd871fc43bd59e17235558c2b0eb58eadb93 |
IEDL.DBID | RIE |
ISBN | 9781479987900 1479987905 |
IngestDate | Wed Jun 26 19:24:35 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i123t-a268aa00c98ae1098a0d1efd7fcc8bd871fc43bd59e17235558c2b0eb58eadb93 |
PageCount | 5 |
ParticipantIDs | ieee_primary_7275773 |
PublicationCentury | 2000 |
PublicationDate | 20150801 |
PublicationDateYYYYMMDD | 2015-08-01 |
PublicationDate_xml | – month: 08 year: 2015 text: 20150801 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | 2015 International Conference on Advances in Computing, Communications and Informatics (ICACCI) |
PublicationTitleAbbrev | ICACCI |
PublicationYear | 2015 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.7149073 |
Snippet | This paper presents a computational based system for detection and classification of lung nodules from chest CT scan images. In this study we consider the case... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1189 |
SubjectTerms | Accuracy Cancer Chest CT images Computed tomography Diseases Feature extraction Geometrical features GLCM Gray level characteristics histogram based threshold Image segmentation Lungs Nodule detection Statistical features |
Title | Feature extraction and LDA based classification of lung nodules in chest CT scan images |
URI | https://ieeexplore.ieee.org/document/7275773 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELbaTkyAWsRbHhhJmjSO44xVoGoRRQyt6Fb5cZEqSoLaZOHXc07S8hADW5Ihsu7s-872fd8RcmMM44AxwPGFVg4iFC4pAb6jgAkdBSE3yhKFp098PGcPi3DRIrd7LgwAVMVn4NrH6i7f5Lq0R2V9xNowioI2aeM0-8bVinDPYIWmdhJOzbvXqAz5XtyfJMMkmdhSrtBtfvOjn0oFJ6NDMt0NpK4ieXXLQrn645dG439HekR6X8Q9-ryHpGPSgqxLXmyaV26AYhze1DwGKjNDH--G1IKYodqm0LZmqHITzVO6xhhAs9yUa9jSVUartlo0mdEtuoKu3jAKbXtkPrqfJWOn6afgrBCfCkcOuJDS83QsJKBRhPSMD6mJUq2FMrh1SjULlAljwLQmsEpgeqA8UKHA-abi4IR0sjyDU0JTFinODJNcCitQEzPP9vZjnCkRacnPSNcaZfleS2YsG3uc__35ghxYx9R1dZekU2xKuEKsL9R15eRPyqOneQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT4NAEN3UetCTmtb47R48CoWywHJs0KbVtvHQxt6a_RiSxgqmhYu_3lmgfsWDN-BANjMwbxbee0PIjdYsAKwBlsuVtBCh8JXi4FoSGFeh5wdaGqHweBIMZuxh7s8b5PZTCwMAJfkMbHNY_svXmSrMp7IOYq0fht4O2UXcZ_43tVaIuwZjNbU1carPndpnyHWizjDuxfHQkLl8u77Rj4kqJaD0D8h4u5SKR_JiF7m01fsvl8b_rvWQtL-ke_TpE5SOSAPSFnk2jV6xBoqVeF0pGahINR3d9aiBMU2VaaINa6hMFM0SusIqQNNMFyvY0GVKy8FaNJ7SDSaDLl-xDm3aZNa_n8YDq56oYC0RoXJLdAMuhOOoiAvAoHDhaBcSHSZKcalx85Qo5kntR4CNjWe8wFRXOiB9jk-cjLxj0kyzFE4ITVgoA6aZCAQ3FjURc8x0PxYwyUMlglPSMkFZvFWmGYs6Hmd_X74me4PpeLQYDSeP52TfJKli2V2QZr4u4BKRP5dXZcI_AMLEqsY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2015+International+Conference+on+Advances+in+Computing%2C+Communications+and+Informatics+%28ICACCI%29&rft.atitle=Feature+extraction+and+LDA+based+classification+of+lung+nodules+in+chest+CT+scan+images&rft.au=Aggarwal%2C+Taruna&rft.au=Furqan%2C+Asna&rft.au=Kalra%2C+Kunal&rft.date=2015-08-01&rft.pub=IEEE&rft.isbn=9781479987900&rft.spage=1189&rft.epage=1193&rft_id=info:doi/10.1109%2FICACCI.2015.7275773&rft.externalDocID=7275773 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781479987900/lc.gif&client=summon&freeimage=true |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781479987900/mc.gif&client=summon&freeimage=true |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781479987900/sc.gif&client=summon&freeimage=true |