Feature extraction and LDA based classification of lung nodules in chest CT scan images

This paper presents a computational based system for detection and classification of lung nodules from chest CT scan images. In this study we consider the case of a primary lung cancer. Optimal thresholding and gray level characteristics are used for segmentation of lung nodules from the lung volume...

Full description

Saved in:
Bibliographic Details
Published in2015 International Conference on Advances in Computing, Communications and Informatics (ICACCI) pp. 1189 - 1193
Main Authors Aggarwal, Taruna, Furqan, Asna, Kalra, Kunal
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.08.2015
Subjects
Online AccessGet full text
ISBN9781479987900
1479987905
DOI10.1109/ICACCI.2015.7275773

Cover

Abstract This paper presents a computational based system for detection and classification of lung nodules from chest CT scan images. In this study we consider the case of a primary lung cancer. Optimal thresholding and gray level characteristics are used for segmentation of lung nodules from the lung volume area. After detection of lung mass tissue, geometrical features are extracted. Simple image processing techniques like filtering, morphological operation etc. are used on CT images collected from Cancer Imaging Archive database to make the study effective and efficient. To distinguish between the nodule and normal pulmonary structure, geometrical features are merged with LDA (linear discriminate analysis) classifier. GLCM technique is used for calculating statistical features. The results show that proposed methodology successfully detects and provides prior classification of nodules and normal anatomy structure effectively, based on geometrical, statistical and gray level characteristics. Results also provide 84 % accuracy, 97.14 % sensitivity and 53.33 % specificity.
AbstractList This paper presents a computational based system for detection and classification of lung nodules from chest CT scan images. In this study we consider the case of a primary lung cancer. Optimal thresholding and gray level characteristics are used for segmentation of lung nodules from the lung volume area. After detection of lung mass tissue, geometrical features are extracted. Simple image processing techniques like filtering, morphological operation etc. are used on CT images collected from Cancer Imaging Archive database to make the study effective and efficient. To distinguish between the nodule and normal pulmonary structure, geometrical features are merged with LDA (linear discriminate analysis) classifier. GLCM technique is used for calculating statistical features. The results show that proposed methodology successfully detects and provides prior classification of nodules and normal anatomy structure effectively, based on geometrical, statistical and gray level characteristics. Results also provide 84 % accuracy, 97.14 % sensitivity and 53.33 % specificity.
Author Aggarwal, Taruna
Kalra, Kunal
Furqan, Asna
Author_xml – sequence: 1
  givenname: Taruna
  surname: Aggarwal
  fullname: Aggarwal, Taruna
  email: taruna.aggarwal.27@gmail.com
  organization: Dept. of Electron. & Commun. Eng, USICT, Delhi, India
– sequence: 2
  givenname: Asna
  surname: Furqan
  fullname: Furqan, Asna
  email: asnafurqan@gmail.com
  organization: Dept. of Electron. & Commun. Eng, USICT, Delhi, India
– sequence: 3
  givenname: Kunal
  surname: Kalra
  fullname: Kalra, Kunal
  email: kunalkalra21@gmail.com
  organization: Dept. of Electron. & Commun. Eng, USICT, Delhi, India
BookMark eNpVj89KAzEYxCPqQWufoJe8wNb82ZjkWFarhQUvFY_lS_KlBtasbHZB395Fe-lpGAZm5ndLrnKfkZAVZ2vOmb3fNZum2a0F42qthVZaywuytNrwWltrtBX15Zln7Ia8bxHGaUCK3-MAfkx9ppADbR831EHBQH0HpaSYPPyFfaTdlI8092HqsNCUqf_AMtJmT4uHTNMnHLHckesIXcHlSRfkbfu0b16q9vV5PtpWiQs5ViAeDABj3hrAGcIACxxj0NF744LRPPpauqAsci2kUsp44Rg6ZRCCs3JBVv-9CREPX8O8PvwcTvjyF1EhUpc
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICACCI.2015.7275773
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781479987924
1479987921
EndPage 1193
ExternalDocumentID 7275773
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i123t-a268aa00c98ae1098a0d1efd7fcc8bd871fc43bd59e17235558c2b0eb58eadb93
IEDL.DBID RIE
ISBN 9781479987900
1479987905
IngestDate Wed Jun 26 19:24:35 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i123t-a268aa00c98ae1098a0d1efd7fcc8bd871fc43bd59e17235558c2b0eb58eadb93
PageCount 5
ParticipantIDs ieee_primary_7275773
PublicationCentury 2000
PublicationDate 20150801
PublicationDateYYYYMMDD 2015-08-01
PublicationDate_xml – month: 08
  year: 2015
  text: 20150801
  day: 01
PublicationDecade 2010
PublicationTitle 2015 International Conference on Advances in Computing, Communications and Informatics (ICACCI)
PublicationTitleAbbrev ICACCI
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.7149073
Snippet This paper presents a computational based system for detection and classification of lung nodules from chest CT scan images. In this study we consider the case...
SourceID ieee
SourceType Publisher
StartPage 1189
SubjectTerms Accuracy
Cancer
Chest CT images
Computed tomography
Diseases
Feature extraction
Geometrical features
GLCM
Gray level characteristics
histogram based threshold
Image segmentation
Lungs
Nodule detection
Statistical features
Title Feature extraction and LDA based classification of lung nodules in chest CT scan images
URI https://ieeexplore.ieee.org/document/7275773
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELbaTkyAWsRbHhhJmjSO44xVoGoRRQyt6Fb5cZEqSoLaZOHXc07S8hADW5Ihsu7s-872fd8RcmMM44AxwPGFVg4iFC4pAb6jgAkdBSE3yhKFp098PGcPi3DRIrd7LgwAVMVn4NrH6i7f5Lq0R2V9xNowioI2aeM0-8bVinDPYIWmdhJOzbvXqAz5XtyfJMMkmdhSrtBtfvOjn0oFJ6NDMt0NpK4ieXXLQrn645dG439HekR6X8Q9-ryHpGPSgqxLXmyaV26AYhze1DwGKjNDH--G1IKYodqm0LZmqHITzVO6xhhAs9yUa9jSVUartlo0mdEtuoKu3jAKbXtkPrqfJWOn6afgrBCfCkcOuJDS83QsJKBRhPSMD6mJUq2FMrh1SjULlAljwLQmsEpgeqA8UKHA-abi4IR0sjyDU0JTFinODJNcCitQEzPP9vZjnCkRacnPSNcaZfleS2YsG3uc__35ghxYx9R1dZekU2xKuEKsL9R15eRPyqOneQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT4NAEN3UetCTmtb47R48CoWywHJs0KbVtvHQxt6a_RiSxgqmhYu_3lmgfsWDN-BANjMwbxbee0PIjdYsAKwBlsuVtBCh8JXi4FoSGFeh5wdaGqHweBIMZuxh7s8b5PZTCwMAJfkMbHNY_svXmSrMp7IOYq0fht4O2UXcZ_43tVaIuwZjNbU1carPndpnyHWizjDuxfHQkLl8u77Rj4kqJaD0D8h4u5SKR_JiF7m01fsvl8b_rvWQtL-ke_TpE5SOSAPSFnk2jV6xBoqVeF0pGahINR3d9aiBMU2VaaINa6hMFM0SusIqQNNMFyvY0GVKy8FaNJ7SDSaDLl-xDm3aZNa_n8YDq56oYC0RoXJLdAMuhOOoiAvAoHDhaBcSHSZKcalx85Qo5kntR4CNjWe8wFRXOiB9jk-cjLxj0kyzFE4ITVgoA6aZCAQ3FjURc8x0PxYwyUMlglPSMkFZvFWmGYs6Hmd_X74me4PpeLQYDSeP52TfJKli2V2QZr4u4BKRP5dXZcI_AMLEqsY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2015+International+Conference+on+Advances+in+Computing%2C+Communications+and+Informatics+%28ICACCI%29&rft.atitle=Feature+extraction+and+LDA+based+classification+of+lung+nodules+in+chest+CT+scan+images&rft.au=Aggarwal%2C+Taruna&rft.au=Furqan%2C+Asna&rft.au=Kalra%2C+Kunal&rft.date=2015-08-01&rft.pub=IEEE&rft.isbn=9781479987900&rft.spage=1189&rft.epage=1193&rft_id=info:doi/10.1109%2FICACCI.2015.7275773&rft.externalDocID=7275773
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781479987900/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781479987900/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781479987900/sc.gif&client=summon&freeimage=true