An unsupervised approach for gait-based authentication

Similar to fingerprint and iris pattern, everyone's gait is unique, and gait has been proposed as a biometric feature for security applications. This paper presents a lightweight accelerometer-based technique for user authentication on smart wearable devices. Designed as an unsupervised classif...

Full description

Saved in:
Bibliographic Details
Published inProceedings (International Conference on Wearable and Implantable Body Sensor Networks : Print) pp. 1 - 6
Main Authors Cola, Guglielmo, Avvenuti, Marco, Vecchio, Alessio, Guang-Zhong Yang, Lo, Benny
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Similar to fingerprint and iris pattern, everyone's gait is unique, and gait has been proposed as a biometric feature for security applications. This paper presents a lightweight accelerometer-based technique for user authentication on smart wearable devices. Designed as an unsupervised classification approach, the proposed authentication technique can learn the user's gait pattern automatically when the user first starts wearing the device. Anomaly detection is then used to verify the device owner. The technique has been evaluated both in controlled and uncontrolled environments, with 20 and 6 healthy volunteers respectively. The Equal Error Rate (EER) in the controlled environments ranged from 5.7% (waist-mounted sensor) to 8.0% (trouser pocket). In the uncontrolled experiment, the device was put in the subject's trouser pocket, and the results were similar to the respective supervised experiment (EER=9.7%).
AbstractList Similar to fingerprint and iris pattern, everyone's gait is unique, and gait has been proposed as a biometric feature for security applications. This paper presents a lightweight accelerometer-based technique for user authentication on smart wearable devices. Designed as an unsupervised classification approach, the proposed authentication technique can learn the user's gait pattern automatically when the user first starts wearing the device. Anomaly detection is then used to verify the device owner. The technique has been evaluated both in controlled and uncontrolled environments, with 20 and 6 healthy volunteers respectively. The Equal Error Rate (EER) in the controlled environments ranged from 5.7% (waist-mounted sensor) to 8.0% (trouser pocket). In the uncontrolled experiment, the device was put in the subject's trouser pocket, and the results were similar to the respective supervised experiment (EER=9.7%).
Author Avvenuti, Marco
Cola, Guglielmo
Vecchio, Alessio
Lo, Benny
Guang-Zhong Yang
Author_xml – sequence: 1
  givenname: Guglielmo
  surname: Cola
  fullname: Cola, Guglielmo
  email: g.cola@iet.unipi.it
  organization: Dip. di Ing. dell'Inf., Univ. of Pisa, Pisa, Italy
– sequence: 2
  givenname: Marco
  surname: Avvenuti
  fullname: Avvenuti, Marco
  email: m.avvenuti@iet.unipi.it
  organization: Dip. di Ing. dell'Inf., Univ. of Pisa, Pisa, Italy
– sequence: 3
  givenname: Alessio
  surname: Vecchio
  fullname: Vecchio, Alessio
  email: a.vecchio@iet.unipi.it
  organization: Dip. di Ing. dell'Inf., Univ. of Pisa, Pisa, Italy
– sequence: 4
  surname: Guang-Zhong Yang
  fullname: Guang-Zhong Yang
  email: g.z.yang@imperial.ac.uk
  organization: Hamlyn Centre, Imperial Coll. London, London, UK
– sequence: 5
  givenname: Benny
  surname: Lo
  fullname: Lo, Benny
  email: benny.lo@imperial.ac.uk
  organization: Hamlyn Centre, Imperial Coll. London, London, UK
BookMark eNotj0tLAzEURiNUsK3dC27mD2TMzc3ksaxFq1B0oa5LJnNjI5oZ5iH47y3a1eE7iw_Ogs1ym4mxKxAlgHA3ty9PpRRQlUY6pySesQUobdAcJc7YXKLR3FqrL9hqGD6EEAjHCXrO9DoXUx6mjvrvNFBT-K7rWx8ORWz74t2nkdf-z0_jgfKYgh9Tmy_ZefSfA61OXLK3-7vXzQPfPW8fN-sdTyBx5E56QTFqRVY70wQZYmXrJlaRIHiIrnEYwGpCFZ0XWmLtRDBBKOVjbRGX7Pr_NxHRvuvTl-9_9qdM_AWLsUh7
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/BSN.2015.7299423
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1467372013
9781467372015
EndPage 6
ExternalDocumentID 7299423
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
OCL
RIE
RIL
ID FETCH-LOGICAL-i123t-92a0eff64e8697dc2cf58bdf5fe1ca1f9d93c186e34f9a0623b90c7c044afb833
IEDL.DBID RIE
ISSN 2376-8886
IngestDate Wed Aug 27 02:49:03 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i123t-92a0eff64e8697dc2cf58bdf5fe1ca1f9d93c186e34f9a0623b90c7c044afb833
PageCount 6
ParticipantIDs ieee_primary_7299423
PublicationCentury 2000
PublicationDate 20150601
PublicationDateYYYYMMDD 2015-06-01
PublicationDate_xml – month: 06
  year: 2015
  text: 20150601
  day: 01
PublicationDecade 2010
PublicationTitle Proceedings (International Conference on Wearable and Implantable Body Sensor Networks : Print)
PublicationTitleAbbrev BSN
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003188816
Score 2.016138
Snippet Similar to fingerprint and iris pattern, everyone's gait is unique, and gait has been proposed as a biometric feature for security applications. This paper...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Acceleration
Anomaly Detection
Authentication
Detection algorithms
Feature extraction
Gait Analysis
Gait-Based Authentication
Legged locomotion
Monitoring
Training
Wearable sensors
Title An unsupervised approach for gait-based authentication
URI https://ieeexplore.ieee.org/document/7299423
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED61nWDh0SLeysCI0zRxHHsERFUhtUKCSt0qP86oQkoRTRZ-PXaShocY2BwP0cVn5Tufv_sO4EooVMaT2r1cGKEcEyJMoghTiaU0cxjOfL3zdMYmc_qwSBcduG5rYRCxIp9h6IfVXb5Z69KnyoYuEBQO_rvQdQe3ularzae4vcn5qO4llzHiHtpbyUgMb59mnsaVhs0rfvRSqaBkvAfTrRE1g-Q1LAsV6o9f-oz_tXIfBl9Fe8FjC0cH0MH8EHa_6Q32gd3kQZlvyjf_g9igCbaK4oELXYMXuSqIRzU373nvedHk8wYwH98_301I0ziBrBwQFUTEMkJrGUXORGZ0rG3KlbGpxZGWIyuMSPSIM0yoFTJyEZASkc50RKm0iifJEfTydY7HEKDBKHWGa5oxd7bR0lhpMLYxl5mRNjqBvl-B5VutjbFsPv707-kz2PFeqKlW59Ar3ku8cKBeqMvKm58pqaGu
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKGYCFR4t4k4ERt3k4jj0CoirQVki0UrfKjzOqkNKKJgu_HjtJw0MMbLaH6GxH_s7n775D6IpLkNqR2p1cGCYMIsx1JDGVkSEksRhOXb7zcET7E_I4jacNdF3nwgBAQT6DjmsWb_l6oXIXKutaR5Bb-N9Amxb346DM1qojKvbvZCwoq8klFNtO_S7p8-7ty8gRueJO9ZEf1VQKMOntouHajJJD8tbJM9lRH78UGv9r5x5qf6Xtec81IO2jBqQHaOeb4mAL0ZvUy9NVvnRHxAq0t9YU96zz6r2KeYYdrtlxx3xPsyqi10aT3v34ro-r0gl4bqEowzwUPhhDCTDKE61CZWImtYkNBEoEhmseqYBRiIjhwrc-kOS-SpRPiDCSRdEhaqaLFI6QBxr82BquSELt7UYJbYSG0IRMJFoY_xi13ArMlqU6xqya_Mnfw5doqz8eDmaDh9HTKdp2O1ISr85QM3vP4dxCfCYvip39BMpRpPc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+%28International+Conference+on+Wearable+and+Implantable+Body+Sensor+Networks+%3A+Print%29&rft.atitle=An+unsupervised+approach+for+gait-based+authentication&rft.au=Cola%2C+Guglielmo&rft.au=Avvenuti%2C+Marco&rft.au=Vecchio%2C+Alessio&rft.au=Guang-Zhong+Yang&rft.date=2015-06-01&rft.pub=IEEE&rft.issn=2376-8886&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FBSN.2015.7299423&rft.externalDocID=7299423
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2376-8886&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2376-8886&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2376-8886&client=summon