Twitter sentiment analysis

Social media have received more attention nowadays. Public and private opinion about a wide variety of subjects are expressed and spread continually via numerous social media. Twitter is one of the social media that is gaining popularity. Twitter offers organizations a fast and effective way to anal...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the 6th International Conference on Information Technology and Multimedia pp. 212 - 216
Main Authors Sarlan, Aliza, Nadam, Chayanit, Basri, Shuib
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.11.2014
Subjects
Online AccessGet full text
DOI10.1109/ICIMU.2014.7066632

Cover

Abstract Social media have received more attention nowadays. Public and private opinion about a wide variety of subjects are expressed and spread continually via numerous social media. Twitter is one of the social media that is gaining popularity. Twitter offers organizations a fast and effective way to analyze customers' perspectives toward the critical to success in the market place. Developing a program for sentiment analysis is an approach to be used to computationally measure customers' perceptions. This paper reports on the design of a sentiment analysis, extracting a vast amount of tweets. Prototyping is used in this development. Results classify customers' perspective via tweets into positive and negative, which is represented in a pie chart and html page. However, the program has planned to develop on a web application system, but due to limitation of Django which can be worked on a Linux server or LAMP, for further this approach need to be done.
AbstractList Social media have received more attention nowadays. Public and private opinion about a wide variety of subjects are expressed and spread continually via numerous social media. Twitter is one of the social media that is gaining popularity. Twitter offers organizations a fast and effective way to analyze customers' perspectives toward the critical to success in the market place. Developing a program for sentiment analysis is an approach to be used to computationally measure customers' perceptions. This paper reports on the design of a sentiment analysis, extracting a vast amount of tweets. Prototyping is used in this development. Results classify customers' perspective via tweets into positive and negative, which is represented in a pie chart and html page. However, the program has planned to develop on a web application system, but due to limitation of Django which can be worked on a Linux server or LAMP, for further this approach need to be done.
Author Basri, Shuib
Nadam, Chayanit
Sarlan, Aliza
Author_xml – sequence: 1
  givenname: Aliza
  surname: Sarlan
  fullname: Sarlan, Aliza
  email: aliza_sarlan@petronas.com.my
  organization: Univ. Teknol. PETRONAS, Tronoh, Malaysia
– sequence: 2
  givenname: Chayanit
  surname: Nadam
  fullname: Nadam, Chayanit
  email: chayanit171@gmail.com
  organization: Univ. Teknol. PETRONAS, Tronoh, Malaysia
– sequence: 3
  givenname: Shuib
  surname: Basri
  fullname: Basri, Shuib
  email: shuib_basri@petronas.com.my
  organization: Univ. Teknol. PETRONAS, Tronoh, Malaysia
BookMark eNotjs2KwjAURiPowr8X0I0v0JqbpMm9y6E4WlDc6FpicgsBrUNbEN9eYeSDc3aHbyKGzaNhIRYgcwBJ66qsDudcSTC5k9ZarQZiTg7BOKLCKC3HYnF6pr7ndtVx06f7Byvf-NurS91MjGp_63j-9VScfzencpftj9uq_NlnCZTuM1IIEKPyluCzYAqPgIFrGZEKJqwt1FEpDtEw-OACSrThirEg44LTU7H87yZmvvy16e7b1-X7WL8B8145SA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICIMU.2014.7066632
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Business
EISBN 9781479954230
1479954233
EndPage 216
ExternalDocumentID 7066632
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i123t-92811dd2a691919c45a818cef0d895e98f61fd22ecd4e1ac7c8086cb8d5947c73
IEDL.DBID RIE
IngestDate Thu Jun 29 18:38:01 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i123t-92811dd2a691919c45a818cef0d895e98f61fd22ecd4e1ac7c8086cb8d5947c73
PageCount 5
ParticipantIDs ieee_primary_7066632
PublicationCentury 2000
PublicationDate 20141101
PublicationDateYYYYMMDD 2014-11-01
PublicationDate_xml – month: 11
  year: 2014
  text: 20141101
  day: 01
PublicationDecade 2010
PublicationTitle Proceedings of the 6th International Conference on Information Technology and Multimedia
PublicationTitleAbbrev ICIMU
PublicationYear 2014
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8666956
Snippet Social media have received more attention nowadays. Public and private opinion about a wide variety of subjects are expressed and spread continually via...
SourceID ieee
SourceType Publisher
StartPage 212
SubjectTerms Business
Computers
Data mining
Media
natural language processing
opinion mining
sentiment
Sentiment analysis
social media
Twitter
Title Twitter sentiment analysis
URI https://ieeexplore.ieee.org/document/7066632
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07a8MwED7SDKVTH0lp0wceOlZObMuWNYeGpODSIYZsQY8zhIJTikOgv74nP1JaOnQzwiDpTug7Sfd9B_DgNKHSmDwQUazAuOKK6RAFo9BauUrcsaqfC7KXZJ7z51W86sHjgQuDiHXyGfrus37Lt1uzc1dlY-GC7Yg23CNaZg1Xq-PBTOR4MV1kuUvW4n7744-KKTVgzE4h67pq8kTe_F2lffP5S4Xxv2M5g-E3Nc97PYDOOfSwvIDjLn19AKPlfuMIOp4jFdXK_Z5qdUeGkM-eltM5a-sfsA3hScVkmAaBtaFKJJ2qpCHDEbwaLCY2lTHKtEiCwoYhGssxUEYYsntidGpjyYUR0SX0y22JV-BxJF9EtkjSmPAcIxlojLTmKjRCSBFcw8BNcf3eSFys29mN_m6-gRNn5oaSdwv96mOHd4TNlb6vnfIFb2aONA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB5KBfXkoxWtrz14dLfd3WSzORdLq93ioYXeSh6zUIS2yBbBX-9kd1tRPHgLIZBkBvJNkvm-AXhwmlApJw_EFCv4TDHl6wiFT6G1cpW4uSq_C7JJMpyx5zmfN-Bxz4VBxDL5DAPXLP_y7dps3VNZV7hgO6YD94Bwn_GKrbVjwvRkd9QfZTOXrsWCeuiPmiklZAxOINtNVmWKvAXbQgfm85cO439Xcwrtb3Ke97qHnTNo4OocDncJ7C3oTD-WjqLjOVpRqd3vqVp5pA2zwdO0P_TrCgj-khCl8GWUhqG1kUok3aukIdMRwBrMezaVHGWaJ2FuowiNZRgqIwxZPjE6tVwyYUR8Ac3VeoWX4DEkb8Q2T1JOiI6xDDXGWjMVGSGkCK-g5ba42FQiF4t6d52_u-_haDjNxovxaPJyDcfO5BVB7waaxfsWbwmpC31XOugLFqKRgQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+6th+International+Conference+on+Information+Technology+and+Multimedia&rft.atitle=Twitter+sentiment+analysis&rft.au=Sarlan%2C+Aliza&rft.au=Nadam%2C+Chayanit&rft.au=Basri%2C+Shuib&rft.date=2014-11-01&rft.pub=IEEE&rft.spage=212&rft.epage=216&rft_id=info:doi/10.1109%2FICIMU.2014.7066632&rft.externalDocID=7066632