A signal denoising technique based on wavelets modulus maxima lines and a self-scalable grid classifier

This paper presents the description of a signal processing technique using the Wavelets Transform and a self-scalable grid classifier. The procedure is based on the cycle-spinning approach applied to the Translation-invariant Wavelet Transform. It exploits the characteristics of the Wavelets modulus...

Full description

Saved in:
Bibliographic Details
Published in2015 IEEE Workshop on Signal Processing Systems (SiPS) pp. 1 - 6
Main Authors Vasconcelos Machado, Rubem Geraldo, de Oliveira Mota, Hilton
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.10.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper presents the description of a signal processing technique using the Wavelets Transform and a self-scalable grid classifier. The procedure is based on the cycle-spinning approach applied to the Translation-invariant Wavelet Transform. It exploits the characteristics of the Wavelets modulus maxima propagation along decomposition levels (scales) as the criterion to select the relevant coefficients. Selection was performed by a data classifier inspired on a Self-organizing Map but with enhancements to incorporate self-scalability and multiple instance learning capabilities. The procedure was employed for the processing of Partial Discharge signals, which is a technique for the diagnostics of high-voltage equipment. We performed comparisons with standard form classifiers based on the Multilayer Perceptron and Support Vector Machines. The results show that the technique allows the same orders of accuracy and generalization of those classifiers, but with the advantages of self-scalability, dimensional independence, low processing cost and high degree of parallelization.
AbstractList This paper presents the description of a signal processing technique using the Wavelets Transform and a self-scalable grid classifier. The procedure is based on the cycle-spinning approach applied to the Translation-invariant Wavelet Transform. It exploits the characteristics of the Wavelets modulus maxima propagation along decomposition levels (scales) as the criterion to select the relevant coefficients. Selection was performed by a data classifier inspired on a Self-organizing Map but with enhancements to incorporate self-scalability and multiple instance learning capabilities. The procedure was employed for the processing of Partial Discharge signals, which is a technique for the diagnostics of high-voltage equipment. We performed comparisons with standard form classifiers based on the Multilayer Perceptron and Support Vector Machines. The results show that the technique allows the same orders of accuracy and generalization of those classifiers, but with the advantages of self-scalability, dimensional independence, low processing cost and high degree of parallelization.
Author Vasconcelos Machado, Rubem Geraldo
de Oliveira Mota, Hilton
Author_xml – sequence: 1
  givenname: Rubem Geraldo
  surname: Vasconcelos Machado
  fullname: Vasconcelos Machado, Rubem Geraldo
  email: mgemaff@gmail.com
  organization: Electrical Engineering, Federal University of Minas Gerais, Belo Horizonte, Brazil
– sequence: 2
  givenname: Hilton
  surname: de Oliveira Mota
  fullname: de Oliveira Mota, Hilton
  email: hilton@cpdee.ufmg.br
  organization: Department of Electrical Engineering, Federal University of Minas Gerais, Belo Horizonte, Brazil
BookMark eNotj8tKAzEUQCPoQms_QNzcH5iaV_NYluILCgrVdbmT3BkDaUYnrY-_t9Cuzu5wzhU7L0Mhxm4EnwnB_d06va5nkov5zCqtvdVnbOqtE9pY5Q3X8pL1C6ipL5ghUhlSTaWHHYWPkr72BC1WijAU-MFvyrSrsB3iPu8PxN-0RcipUAUsERAq5a6pATO2maAfU4SQsdbUJRqv2UWHudL0xAl7f7h_Wz41q5fH5-Vi1SQh1a5xrYlSaR-VRiOdUSRJkxPIRQiu85YCku7QkfZ83rbaGWftvOVRBjKa1ITdHr2JiDaf4yFy_Nuc9tU_IPxVlg
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/SiPS.2015.7344974
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781467396042
1467396044
EndPage 6
ExternalDocumentID 7344974
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i123t-8b6d2349d34a62863e2e4e81a01cc8f97ecae4fa8e4905bb4868775b0d2ce64e3
IEDL.DBID RIE
IngestDate Thu Jun 29 18:38:14 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i123t-8b6d2349d34a62863e2e4e81a01cc8f97ecae4fa8e4905bb4868775b0d2ce64e3
PageCount 6
ParticipantIDs ieee_primary_7344974
PublicationCentury 2000
PublicationDate 20151001
PublicationDateYYYYMMDD 2015-10-01
PublicationDate_xml – month: 10
  year: 2015
  text: 20151001
  day: 01
PublicationDecade 2010
PublicationTitle 2015 IEEE Workshop on Signal Processing Systems (SiPS)
PublicationTitleAbbrev SiPS
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.6170709
Snippet This paper presents the description of a signal processing technique using the Wavelets Transform and a self-scalable grid classifier. The procedure is based...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms denoising
multiple-instance learning
Neurons
Noise reduction
Partial discharges
self-organizing maps
Training
Transient analysis
Wavelet transforms
wavelets transform
Title A signal denoising technique based on wavelets modulus maxima lines and a self-scalable grid classifier
URI https://ieeexplore.ieee.org/document/7344974
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA7bTp5UNvE3OXi0W9ukP3IUcQxhMpiD3cZr8jKKWytri-Jfb9LWieLBSxJCICEP8r0k3_ceITcSgOlQCsfXOnA4mEIorRymXMVZHPkgrVB4-hROFvxxGSw75HavhUHEmnyGQ9us__JVLiv7VDaKGOfG_-2SbiREo9VqPyo9V4zm6WxuuVrBsB33I2FKjRfjQzL9mqmhibwMqzIZyo9fQRj_u5QjMvhW5tHZHnOOSQezPlnfUUvDgA01h0ie2ts_3cdmpRanFM0z-gY2yURZ0G2uqk1lanhPt0Cto1lQyBQFWuBGO4Wxm1VU0fUuVVRa_zrVBj4HZDF-eL6fOG0CBSc1gFQ6cRIqn3GhGAcrQWXoI8fYA9eTMtYiQgnINcTIhRskCY_DOIqCxFW-xJAjOyG9LM_wlFB0pbmIoKdcX3EPPWNhlyFwZTwUFMDOSN9u0uq1iZGxavfn_O_uC3JgDdWQ4i5Jr9xVeGXAvUyua6t-AjNSqak
link.rule.ids 310,311,783,787,792,793,799,27939,55088
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwGA1zHvSksom_zcGj3dIm_XUUcUzdxmAb7DbS5Msobq2sLYp_vUlbJ4oHL2kIhYZ80PeSvPd9CN0IzqnyRGg5SrkW47oJpZIWlUQyGvgOF8YoPBx5_Rl7mrvzBrrdemEAoBSfQcd0y7t8mYrCHJV1fcqY5r87aNc1vKJya9VXlTYJu5N4PDFqLbdTv_mjZEqJGL0DNPz6ViUUeekUedQRH7_SMP53Moeo_e3Nw-Mt6hyhBiQttLzDRojBV1j_RtLY7P_xNjsrNkglcZrgN27KTOQZXqeyWBX6yd_jNceGamaYJxJznMFKWZmOnPFU4eUmllgYhh0rDaBtNOs9TO_7Vl1CwYo1JOVWEHnSoSyUlHFjQqXgAIPA5sQWIlChD4IDUzwAFhI3iljgBb7vRkQ6AjwG9Bg1kzSBE4SBCL0VAVsSRzIbbB1jQoEzqTkKhJyeopZZpMVrlSVjUa_P2d_D12ivPx0OFoPH0fM52jdBqyRyF6iZbwq41FCfR1dlhD8BQU6s9g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2015+IEEE+Workshop+on+Signal+Processing+Systems+%28SiPS%29&rft.atitle=A+signal+denoising+technique+based+on+wavelets+modulus+maxima+lines+and+a+self-scalable+grid+classifier&rft.au=Vasconcelos+Machado%2C+Rubem+Geraldo&rft.au=de+Oliveira+Mota%2C+Hilton&rft.date=2015-10-01&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FSiPS.2015.7344974&rft.externalDocID=7344974