A signal denoising technique based on wavelets modulus maxima lines and a self-scalable grid classifier
This paper presents the description of a signal processing technique using the Wavelets Transform and a self-scalable grid classifier. The procedure is based on the cycle-spinning approach applied to the Translation-invariant Wavelet Transform. It exploits the characteristics of the Wavelets modulus...
Saved in:
Published in | 2015 IEEE Workshop on Signal Processing Systems (SiPS) pp. 1 - 6 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.10.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper presents the description of a signal processing technique using the Wavelets Transform and a self-scalable grid classifier. The procedure is based on the cycle-spinning approach applied to the Translation-invariant Wavelet Transform. It exploits the characteristics of the Wavelets modulus maxima propagation along decomposition levels (scales) as the criterion to select the relevant coefficients. Selection was performed by a data classifier inspired on a Self-organizing Map but with enhancements to incorporate self-scalability and multiple instance learning capabilities. The procedure was employed for the processing of Partial Discharge signals, which is a technique for the diagnostics of high-voltage equipment. We performed comparisons with standard form classifiers based on the Multilayer Perceptron and Support Vector Machines. The results show that the technique allows the same orders of accuracy and generalization of those classifiers, but with the advantages of self-scalability, dimensional independence, low processing cost and high degree of parallelization. |
---|---|
AbstractList | This paper presents the description of a signal processing technique using the Wavelets Transform and a self-scalable grid classifier. The procedure is based on the cycle-spinning approach applied to the Translation-invariant Wavelet Transform. It exploits the characteristics of the Wavelets modulus maxima propagation along decomposition levels (scales) as the criterion to select the relevant coefficients. Selection was performed by a data classifier inspired on a Self-organizing Map but with enhancements to incorporate self-scalability and multiple instance learning capabilities. The procedure was employed for the processing of Partial Discharge signals, which is a technique for the diagnostics of high-voltage equipment. We performed comparisons with standard form classifiers based on the Multilayer Perceptron and Support Vector Machines. The results show that the technique allows the same orders of accuracy and generalization of those classifiers, but with the advantages of self-scalability, dimensional independence, low processing cost and high degree of parallelization. |
Author | Vasconcelos Machado, Rubem Geraldo de Oliveira Mota, Hilton |
Author_xml | – sequence: 1 givenname: Rubem Geraldo surname: Vasconcelos Machado fullname: Vasconcelos Machado, Rubem Geraldo email: mgemaff@gmail.com organization: Electrical Engineering, Federal University of Minas Gerais, Belo Horizonte, Brazil – sequence: 2 givenname: Hilton surname: de Oliveira Mota fullname: de Oliveira Mota, Hilton email: hilton@cpdee.ufmg.br organization: Department of Electrical Engineering, Federal University of Minas Gerais, Belo Horizonte, Brazil |
BookMark | eNotj8tKAzEUQCPoQms_QNzcH5iaV_NYluILCgrVdbmT3BkDaUYnrY-_t9Cuzu5wzhU7L0Mhxm4EnwnB_d06va5nkov5zCqtvdVnbOqtE9pY5Q3X8pL1C6ipL5ghUhlSTaWHHYWPkr72BC1WijAU-MFvyrSrsB3iPu8PxN-0RcipUAUsERAq5a6pATO2maAfU4SQsdbUJRqv2UWHudL0xAl7f7h_Wz41q5fH5-Vi1SQh1a5xrYlSaR-VRiOdUSRJkxPIRQiu85YCku7QkfZ83rbaGWftvOVRBjKa1ITdHr2JiDaf4yFy_Nuc9tU_IPxVlg |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/SiPS.2015.7344974 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9781467396042 1467396044 |
EndPage | 6 |
ExternalDocumentID | 7344974 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i123t-8b6d2349d34a62863e2e4e81a01cc8f97ecae4fa8e4905bb4868775b0d2ce64e3 |
IEDL.DBID | RIE |
IngestDate | Thu Jun 29 18:38:14 EDT 2023 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i123t-8b6d2349d34a62863e2e4e81a01cc8f97ecae4fa8e4905bb4868775b0d2ce64e3 |
PageCount | 6 |
ParticipantIDs | ieee_primary_7344974 |
PublicationCentury | 2000 |
PublicationDate | 20151001 |
PublicationDateYYYYMMDD | 2015-10-01 |
PublicationDate_xml | – month: 10 year: 2015 text: 20151001 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | 2015 IEEE Workshop on Signal Processing Systems (SiPS) |
PublicationTitleAbbrev | SiPS |
PublicationYear | 2015 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.6170709 |
Snippet | This paper presents the description of a signal processing technique using the Wavelets Transform and a self-scalable grid classifier. The procedure is based... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | denoising multiple-instance learning Neurons Noise reduction Partial discharges self-organizing maps Training Transient analysis Wavelet transforms wavelets transform |
Title | A signal denoising technique based on wavelets modulus maxima lines and a self-scalable grid classifier |
URI | https://ieeexplore.ieee.org/document/7344974 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA7bTp5UNvE3OXi0W9ukP3IUcQxhMpiD3cZr8jKKWytri-Jfb9LWieLBSxJCICEP8r0k3_ceITcSgOlQCsfXOnA4mEIorRymXMVZHPkgrVB4-hROFvxxGSw75HavhUHEmnyGQ9us__JVLiv7VDaKGOfG_-2SbiREo9VqPyo9V4zm6WxuuVrBsB33I2FKjRfjQzL9mqmhibwMqzIZyo9fQRj_u5QjMvhW5tHZHnOOSQezPlnfUUvDgA01h0ie2ts_3cdmpRanFM0z-gY2yURZ0G2uqk1lanhPt0Cto1lQyBQFWuBGO4Wxm1VU0fUuVVRa_zrVBj4HZDF-eL6fOG0CBSc1gFQ6cRIqn3GhGAcrQWXoI8fYA9eTMtYiQgnINcTIhRskCY_DOIqCxFW-xJAjOyG9LM_wlFB0pbmIoKdcX3EPPWNhlyFwZTwUFMDOSN9u0uq1iZGxavfn_O_uC3JgDdWQ4i5Jr9xVeGXAvUyua6t-AjNSqak |
link.rule.ids | 310,311,783,787,792,793,799,27939,55088 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwGA1zHvSksom_zcGj3dIm_XUUcUzdxmAb7DbS5Msobq2sLYp_vUlbJ4oHL2kIhYZ80PeSvPd9CN0IzqnyRGg5SrkW47oJpZIWlUQyGvgOF8YoPBx5_Rl7mrvzBrrdemEAoBSfQcd0y7t8mYrCHJV1fcqY5r87aNc1vKJya9VXlTYJu5N4PDFqLbdTv_mjZEqJGL0DNPz6ViUUeekUedQRH7_SMP53Moeo_e3Nw-Mt6hyhBiQttLzDRojBV1j_RtLY7P_xNjsrNkglcZrgN27KTOQZXqeyWBX6yd_jNceGamaYJxJznMFKWZmOnPFU4eUmllgYhh0rDaBtNOs9TO_7Vl1CwYo1JOVWEHnSoSyUlHFjQqXgAIPA5sQWIlChD4IDUzwAFhI3iljgBb7vRkQ6AjwG9Bg1kzSBE4SBCL0VAVsSRzIbbB1jQoEzqTkKhJyeopZZpMVrlSVjUa_P2d_D12ivPx0OFoPH0fM52jdBqyRyF6iZbwq41FCfR1dlhD8BQU6s9g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2015+IEEE+Workshop+on+Signal+Processing+Systems+%28SiPS%29&rft.atitle=A+signal+denoising+technique+based+on+wavelets+modulus+maxima+lines+and+a+self-scalable+grid+classifier&rft.au=Vasconcelos+Machado%2C+Rubem+Geraldo&rft.au=de+Oliveira+Mota%2C+Hilton&rft.date=2015-10-01&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FSiPS.2015.7344974&rft.externalDocID=7344974 |