Large-scale online sequential behavior analysis with latent graphical model

Nowadays large amounts of data on peoples' online activities, especially web-browsing data, have become available. Exploitation on such data can benefit a lot of real-life applications, such as user behavior identification, online customers classification and targeted advertisement. However, ho...

Full description

Saved in:
Bibliographic Details
Published in2015 International Conference on Wireless Communications & Signal Processing (WCSP) pp. 1 - 6
Main Authors Ge Chen, Songjun Ma, Weijie Wu, Xinbing Wang
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.10.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nowadays large amounts of data on peoples' online activities, especially web-browsing data, have become available. Exploitation on such data can benefit a lot of real-life applications, such as user behavior identification, online customers classification and targeted advertisement. However, how to extract features on user behaviors from large amount of time series data is still a challenge due to its high complexity. In this work, we study the problem of inferring users' instantaneous actions from their sequential online-shopping data. We propose a graphical hidden state model based on statistical features and integrate all available information sources to simulate the decision making process. Experimental results show that the proposed algorithm lead to nearly 30% of improvement on the million-clicks data sets.
AbstractList Nowadays large amounts of data on peoples' online activities, especially web-browsing data, have become available. Exploitation on such data can benefit a lot of real-life applications, such as user behavior identification, online customers classification and targeted advertisement. However, how to extract features on user behaviors from large amount of time series data is still a challenge due to its high complexity. In this work, we study the problem of inferring users' instantaneous actions from their sequential online-shopping data. We propose a graphical hidden state model based on statistical features and integrate all available information sources to simulate the decision making process. Experimental results show that the proposed algorithm lead to nearly 30% of improvement on the million-clicks data sets.
Author Xinbing Wang
Songjun Ma
Weijie Wu
Ge Chen
Author_xml – sequence: 1
  surname: Ge Chen
  fullname: Ge Chen
  email: chenge@sjtu.edu.cn
  organization: Dept. of Electron. Eng., Shanghai Jiao Tong Univ., Shanghai, China
– sequence: 2
  surname: Songjun Ma
  fullname: Songjun Ma
  email: masongjun@sjtu.edu.cn
  organization: Dept. of Electron. Eng., Shanghai Jiao Tong Univ., Shanghai, China
– sequence: 3
  surname: Weijie Wu
  fullname: Weijie Wu
  email: weijiewu@sjtu.edu.cn
  organization: Sch. of Inf. Security Eng., Shanghai Jiao Tong Univ., Shanghai, China
– sequence: 4
  surname: Xinbing Wang
  fullname: Xinbing Wang
  email: xwang8@sjtu.edu.cn
  organization: Dept. of Electron. Eng., Shanghai Jiao Tong Univ., Shanghai, China
BookMark eNotj8FKw0AURUfQhdZ-gLiZH0jMy0wyb5YStIoBBRWX5SXz0gxMJzWJlf69Bbu6m3MO3CtxHofIQtxAlgJk9u6ren9L8wyK1CgNGdozsbQGQZdGmRKNuRQvNY0bTqaWAsshBh9ZTvz9w3H2FGTDPe39MEqKFA6Tn-Svn3sZaD4CcjPSrvdHVW4Hx-FaXHQUJl6ediE-Hx8-qqekfl09V_d14iFXc4JAttO5a4EK4zpl2xw751q0qmm0VaXRDhvgsugQHDI2xNaCzktNCpDVQtz-dz0zr3ej39J4WJ8uqj807Eui
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/WCSP.2015.7341089
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781467376877
1467376876
EndPage 6
ExternalDocumentID 7341089
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i123t-81a9f42dc1a57df39c28fddc893bb493674d8b1e65f81d8e8bae9914264a318e3
IEDL.DBID RIE
IngestDate Thu Jun 29 18:37:31 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i123t-81a9f42dc1a57df39c28fddc893bb493674d8b1e65f81d8e8bae9914264a318e3
PageCount 6
ParticipantIDs ieee_primary_7341089
PublicationCentury 2000
PublicationDate 20151001
PublicationDateYYYYMMDD 2015-10-01
PublicationDate_xml – month: 10
  year: 2015
  text: 20151001
  day: 01
PublicationDecade 2010
PublicationTitle 2015 International Conference on Wireless Communications & Signal Processing (WCSP)
PublicationTitleAbbrev WCSP
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.6231169
Snippet Nowadays large amounts of data on peoples' online activities, especially web-browsing data, have become available. Exploitation on such data can benefit a lot...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Big Data
Data mining
Data models
Feature extraction
Graphical models
History
Statistical Learning
Time series analysis
Time Series Mining
Training
User Behavior Modeling
Title Large-scale online sequential behavior analysis with latent graphical model
URI https://ieeexplore.ieee.org/document/7341089
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEF3anjyptOI3e_Bo0iS76e6ei6WolYIWeyv7MQtiSUWTi7_e2SStKB68hRCSMMPkvey-N0PIVW5lKqTPIgZgIh5KSgum8a_VZQ4RCDExGIVnD6Ppgt8u82WHXO-8MABQi88gDof1Xr7b2CoslQ0FfnITqbqkK5RqvFrtRmWaqOHz-HEetFp53F73Y2BKjReTfTLbPqmRibzGVWli-_mrCeN_X-WADL6deXS-w5xD0oGiT-7ug5w7-sBwA21aX9BGIo3lu6ZbJz7VbQMSGhZf6RpZZlHSumN1yBSth-IMyGJy8zSeRu2QhOgFQaeMZKqV55mzqc6F80zZTHrnLPIQY7hiI8GdNCmMco_UVII0GpATBiKksZ6BHZFesSngmFAlvEvAJ4YzzS1jBqEeeGa1EZnFW52QfgjE6q3pg7FqY3D69-kzsheS0QjfzkmvfK_gAgG8NJd15r4AWwOeWg
link.rule.ids 310,311,783,787,792,793,799,27939,55088
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEB1qPehJpRW_3YNHkybZTbM5F0u1HxRssbeyHxMQSyqaXvz1ziaxonjwFkJIwgyT97L73gzATWxkmMgs8jii9oQrKZVwRX-tNrKEQISJzig8nnQHc_GwiBcNuN16YRCxFJ-h7w7LvXy7Nhu3VNZJ6JMbyHQHdmPHKyq3Vr1VGQZp56n3OHVqrdivr_wxMqVEjP4BjL-eVQlFXvxNoX3z8asN439f5hDa3948Nt2izhE0MG_BcOQE3d47BRxZ1fyCVSJpKuAV-_LiM1W3IGFu-ZWtiGfmBSt7VrtcsXIsThvm_btZb-DVYxK8Z4KdwpOhSjMRWROqOLEZT00kM2sNMRGtRcq7ibBSh9iNMyKnEqVWSKzQUSFFFY38GJr5OscTYGmS2QCzQAuuhOFcE9ijiIzSSWToVqfQcoFYvladMJZ1DM7-Pn0Ne4PZeLQc3U-G57DvElPJ4C6gWbxt8JLgvNBXZRY_AdPMoac
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2015+International+Conference+on+Wireless+Communications+%26+Signal+Processing+%28WCSP%29&rft.atitle=Large-scale+online+sequential+behavior+analysis+with+latent+graphical+model&rft.au=Ge+Chen&rft.au=Songjun+Ma&rft.au=Weijie+Wu&rft.au=Xinbing+Wang&rft.date=2015-10-01&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FWCSP.2015.7341089&rft.externalDocID=7341089