Thermal handprint analysis for forensic identification using Heat-Earth Mover's Distance

Recently, handprint-based recognition system has been widely applied for security and surveillance purposes. The success of this technology has also demonstrated that handprint is a good approach to perform forensic identification. However, existing identification systems are nearly based on the han...

Full description

Saved in:
Bibliographic Details
Published in2016 IEEE International Conference on Identity, Security and Behavior Analysis (ISBA) pp. 1 - 8
Main Authors Kun Woo Cho, Feng Lin, Chen Song, Xiaowei Xu, Fuxing Gu, Wenyao Xu
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.02.2016
Subjects
Online AccessGet full text
DOI10.1109/ISBA.2016.7477241

Cover

Loading…
Abstract Recently, handprint-based recognition system has been widely applied for security and surveillance purposes. The success of this technology has also demonstrated that handprint is a good approach to perform forensic identification. However, existing identification systems are nearly based on the handprints that could be easily prevented. In contrast to earlier works, we exploit the thermal handprint and introduce a novel distance metric for thermal handprint dissimilarity measure, called Heat-Earth Mover's Distance (HEMD). The HEMD is designed to classify heat-based handprints that can be obtained even when the subject wears a glove. HEMD can effectively recognize the subjects by computing the distance between point distributions of target and training handprints. Through a comprehensive study, our identification system demonstrates the performance even with the handprints obtained by the subject wearing a glove. With 20 subjects, our proposed system achieves an accuracy of 94.13%for regular handprints and 92.00% for handprints produced with latex gloves.
AbstractList Recently, handprint-based recognition system has been widely applied for security and surveillance purposes. The success of this technology has also demonstrated that handprint is a good approach to perform forensic identification. However, existing identification systems are nearly based on the handprints that could be easily prevented. In contrast to earlier works, we exploit the thermal handprint and introduce a novel distance metric for thermal handprint dissimilarity measure, called Heat-Earth Mover's Distance (HEMD). The HEMD is designed to classify heat-based handprints that can be obtained even when the subject wears a glove. HEMD can effectively recognize the subjects by computing the distance between point distributions of target and training handprints. Through a comprehensive study, our identification system demonstrates the performance even with the handprints obtained by the subject wearing a glove. With 20 subjects, our proposed system achieves an accuracy of 94.13%for regular handprints and 92.00% for handprints produced with latex gloves.
Author Fuxing Gu
Wenyao Xu
Feng Lin
Kun Woo Cho
Xiaowei Xu
Chen Song
Author_xml – sequence: 1
  surname: Kun Woo Cho
  fullname: Kun Woo Cho
  organization: Dept. of Comput. Sci. & Eng., SUNY at Buffalo, Buffalo, NY, USA
– sequence: 2
  surname: Feng Lin
  fullname: Feng Lin
  organization: Dept. of Comput. Sci. & Eng., SUNY at Buffalo, Buffalo, NY, USA
– sequence: 3
  surname: Chen Song
  fullname: Chen Song
  organization: Dept. of Comput. Sci. & Eng., SUNY at Buffalo, Buffalo, NY, USA
– sequence: 4
  surname: Xiaowei Xu
  fullname: Xiaowei Xu
  organization: Dept. of Comput. Sci. & Eng., SUNY at Buffalo, Buffalo, NY, USA
– sequence: 5
  surname: Fuxing Gu
  fullname: Fuxing Gu
  organization: Shanghai Key Lab. of Modern Opt. Syst., Univ. of Shanghai for Sci. & Technol., Shanghai, China
– sequence: 6
  surname: Wenyao Xu
  fullname: Wenyao Xu
  organization: Dept. of Comput. Sci. & Eng., SUNY at Buffalo, Buffalo, NY, USA
BookMark eNotj71OwzAURo0EAy08AGLxxpTgnySOx1IKrVTEQJG6VRfnXmIpdZBtkPr2FNHh6JvOJ50JOw9jQMZupCilFPZ-9fYwK5WQTWkqY1Qlz9hEVo3R1iizvWTbTY9xDwPvIXRf0YfMIcBwSD5xGuMfGJJ33HcYsifvIPsx8O_kwydfIuRiATH3_GX8wXiX-KNPGYLDK3ZBMCS8Pu2UvT8tNvNlsX59Xs1n68JLpXPRdCSda7FtaqqkQLKWtCUCRCuwJkdKUO1QdgSgW2u1_jgqRlRQqxa0nrLb_1-PiLtjwR7iYXeK1b9HvFBx
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ISBA.2016.7477241
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 146739727X
9781467397278
EndPage 8
ExternalDocumentID 7477241
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i123t-6df1cc8e865f410ef99f39ffaee90e5fcf20f5ce1dfaa389933bdf1704a528a33
IEDL.DBID RIE
IngestDate Thu Jun 29 18:37:15 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i123t-6df1cc8e865f410ef99f39ffaee90e5fcf20f5ce1dfaa389933bdf1704a528a33
PageCount 8
ParticipantIDs ieee_primary_7477241
PublicationCentury 2000
PublicationDate 20160201
PublicationDateYYYYMMDD 2016-02-01
PublicationDate_xml – month: 02
  year: 2016
  text: 20160201
  day: 01
PublicationDecade 2010
PublicationTitle 2016 IEEE International Conference on Identity, Security and Behavior Analysis (ISBA)
PublicationTitleAbbrev ISBA
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.6148206
Snippet Recently, handprint-based recognition system has been widely applied for security and surveillance purposes. The success of this technology has also...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Feature extraction
Forensics
Heating
Iris recognition
Plastics
Training
Title Thermal handprint analysis for forensic identification using Heat-Earth Mover's Distance
URI https://ieeexplore.ieee.org/document/7477241
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA61J08qrfgmB8GL2WY32dfRR0sVKoIWeitJdkaL0hbdXvz1ZnbXiuLBQyCEhIRMyHyZ-WbC2GmkUh1jDAINpsIjYi1sakGEJpFGpxkmBdk7RnfJcKxvJ_Gkxc7XsTAAUJHPIKBq5csvFm5FprKeh75pRFHqG_7hVsdqNY7KUOa9m4fLC-JqJUHT78eHKZW-GGyx0ddMNU3kJViVNnAfv5Iw_ncp26z7HZnH79c6Z4e1YN5hEy9rf7--crKCk6Gu5KbJNcI9JqVCNHXHZ0XDDarEwYnz_sSH_jYWfX-CnvmI-Jxn7_yaQKWfqsvGg_7j1VA0PyaImddApUgKDJ3LIEti1KEEzHNUOaIByCXE6DCSGDsICzSGMuspZf2QVGoTR5lRape154s57DHuMNORiZSR1moNubHWIeTW4yEnlcF91qFdmS7rpBjTZkMO_m4-ZJskmZrufMTa5dsKjr02L-1JJcZP6vCk0Q
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5FD3pSacW3OQhezDa7m-zj6KOl1W4RbKG3kmRntCit6PbirzfZXSuKBw-BEBISMiHzMfm-CSFnQRgLiRIYKoyZRcSC6VgD81XElYgTjHIX78iGUW8sbidy0iAXKy0MAJTkM_BctXzLzxdm6UJlbQt948Cp1NelE-NWaq36qdLnabv_cHXp2FqRV_f88WVK6TG6WyT7mqsiijx7y0J75uNXGsb_LmabtL61efR-5XV2SAPmTTKx1rY37At1cXAXqiuoqrONUItKXXFEdUNnec0OKg1CHev9kfbsfcw69gw90cwxOs_f6Y2DlXaqFhl3O6PrHqv_TGAz64MKFuXoG5NAEkkUPgdMUwxTRAWQcpBoMOAoDfg5KuVy64WhtkNiLpQMEhWGu2RtvpjDHqEGExGoIFRcayEgVVobhFRbRGR4qHCfNN2uTF-rtBjTekMO_m4-JRu9UTaYDvrDu0Oy6axUkZ-PyFrxtoRj69sLfVKa9BOt2KgZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+IEEE+International+Conference+on+Identity%2C+Security+and+Behavior+Analysis+%28ISBA%29&rft.atitle=Thermal+handprint+analysis+for+forensic+identification+using+Heat-Earth+Mover%27s+Distance&rft.au=Kun+Woo+Cho&rft.au=Feng+Lin&rft.au=Chen+Song&rft.au=Xiaowei+Xu&rft.date=2016-02-01&rft.pub=IEEE&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1109%2FISBA.2016.7477241&rft.externalDocID=7477241