Parameters analyzed of Higuchi's fractal dimension for EEG brain signals
Due to the stochastic nature of EEG signals, various nonlinear patterns and methods have been applied in order to obtain characteristic understanding of their dynamic behavior [6]. The Fractal Dimension (FD) is an appropriate tool to analyzed EEG signals and can be calculated by means of the Higuchi...
Saved in:
Published in | 2015 Signal Processing Symposium (SPSympo) pp. 1 - 5 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
Warsaw University of Technology
01.06.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Due to the stochastic nature of EEG signals, various nonlinear patterns and methods have been applied in order to obtain characteristic understanding of their dynamic behavior [6]. The Fractal Dimension (FD) is an appropriate tool to analyzed EEG signals and can be calculated by means of the Higuchi's algorithm. Nevertheless, this algorithm depends of the k parameter to improve the speed of calculation. The aim of this work is to analyze the sensitivity of the k parameter due to segmentation, overlap, and noise over a signal. After that, with a better k parameter we applied the FD on EEG brain signals recorded while subjects were executing cognitive task. To analyze the statistical differences for each cognitive mental task, the hypothesis Wilcoxon signed-rank test was applied. The results for all tested brain bands used in this study reported a statistical difference (p <; 0.05) in 9 out of 10 pairs of mental tasks. The proposed approach reported is a good tool for cognitive tasks discrimination. We have also determine better k parameter for different conditions therefore these results can be used for future studies. |
---|---|
AbstractList | Due to the stochastic nature of EEG signals, various nonlinear patterns and methods have been applied in order to obtain characteristic understanding of their dynamic behavior [6]. The Fractal Dimension (FD) is an appropriate tool to analyzed EEG signals and can be calculated by means of the Higuchi's algorithm. Nevertheless, this algorithm depends of the k parameter to improve the speed of calculation. The aim of this work is to analyze the sensitivity of the k parameter due to segmentation, overlap, and noise over a signal. After that, with a better k parameter we applied the FD on EEG brain signals recorded while subjects were executing cognitive task. To analyze the statistical differences for each cognitive mental task, the hypothesis Wilcoxon signed-rank test was applied. The results for all tested brain bands used in this study reported a statistical difference (p <; 0.05) in 9 out of 10 pairs of mental tasks. The proposed approach reported is a good tool for cognitive tasks discrimination. We have also determine better k parameter for different conditions therefore these results can be used for future studies. |
Author | Noel, Julien Flores Vega, Christian |
Author_xml | – sequence: 1 givenname: Christian surname: Flores Vega fullname: Flores Vega, Christian email: cflores@utec.edu.pe organization: Sch. of Electr. Eng., Univ. de Ing. y Tecnol., Lima, Peru – sequence: 2 givenname: Julien surname: Noel fullname: Noel, Julien email: jnoel@utec.edu.pe organization: Sch. of Energy Eng., Univ. de Ing. y Tecnol., Lima, Peru |
BookMark | eNotj0FLwzAYQCPoQefugpfcPLX2S5omOcqoqzBwMD2PL-mXGVhTSeth_noH7vRO78G7Y9dpTMTYA1QlQGWfd9tdKSpQpYbGCKOu2NJqY6Q2UMumqm9Zt8WMA82UJ44Jj6df6vkYeBcPP_4rPk08ZPQzHnkfB0pTHBMPY-Ztu-YuY0x8ioezN92zm3AGLS9csM_X9mPVFZv39dvqZVNEEHIuFOggpJTKVI1GE0Qg8MqZmjxasgSgVa2kra12EoQWQvsenTNBC--tkwv2-N-NRLT_znHAfNpf_uQf-_NIlQ |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/SPS.2015.7168285 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9788378143604 8378143600 |
EndPage | 5 |
ExternalDocumentID | 7168285 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i123t-517f233358067a8f2fe1c5b84eca9e9e11754539497b3127227cdabb8f72cc9b3 |
IEDL.DBID | RIE |
IngestDate | Thu Jun 29 18:38:41 EDT 2023 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i123t-517f233358067a8f2fe1c5b84eca9e9e11754539497b3127227cdabb8f72cc9b3 |
PageCount | 5 |
ParticipantIDs | ieee_primary_7168285 |
PublicationCentury | 2000 |
PublicationDate | 20150601 |
PublicationDateYYYYMMDD | 2015-06-01 |
PublicationDate_xml | – month: 06 year: 2015 text: 20150601 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | 2015 Signal Processing Symposium (SPSympo) |
PublicationTitleAbbrev | SPS |
PublicationYear | 2015 |
Publisher | Warsaw University of Technology |
Publisher_xml | – name: Warsaw University of Technology |
Score | 1.621063 |
Snippet | Due to the stochastic nature of EEG signals, various nonlinear patterns and methods have been applied in order to obtain characteristic understanding of their... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | cognitive task EEG signals Electrodes Electroencephalography Fractal Dimension Fractals Higuchi's method Prediction algorithms Signal to noise ratio Time series analysis |
Title | Parameters analyzed of Higuchi's fractal dimension for EEG brain signals |
URI | https://ieeexplore.ieee.org/document/7168285 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NSwMxEB3anjyptOI3OQhe3G2bZDebs7QuQqVQC72VJDuRorSi20t_vZndtqJ48BZCICETmMnMe28Abrw2XFihIiOLLJKGZ5FFAo17IW3itMNKbX_0lOZT-ThLZg2423NhELECn2FMw6qWX6zcmlJl3RDbk-BaE5rh41ZztXaVx57uTsYTgmol8XbZj34plbsYHsJot1GNEnmN16WN3eaXBuN_T3IEnW9iHhvvXc4xNHDZhnxsCGFFMpnMkMbIBgu28ixfvFCnk9tP5okKZd5YQVL-lB5jIVRlg8EDs9QhghGIIzzDDkyHg-f7PNo2SIgWweGUUdJXngtBlcxUmcxzj32X2EyiMxo1kgynTISWWlnR54pz5QpjbeYVd05bcQKt5WqJp8DIKibEP85nUurUh7DOCK9lyotC96Q4gzbdwvy91sCYby_g_O_pCzggS9SQqktolR9rvArOu7TXldW-AERDm6Q |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1dT8IwFG0QH_RJDRi_7YPGpw1ou48--KTgkI-QAAlv2HatIRowMmLkt_hX_G_2joHR-Eri27Isy257t571nnsOQheGC0IlDRzB4tBhgoSO1EAaN5RJT3GlU7X9VtuP-ux-4A1y6GPVC6O1Tsln2oXDtJYfT9QMtspKFtuD4FpGoWzo9zf7gza9rt_a2bwkpFbt3URO5iHgjOw3OXG8SmAIpVDs8wMRGmJ0RXkyZFoJrrkGpUrmUc54IGmFBIQEKhZShiYgSnFJ7X030Ka9xiOL7rBlrbPMS91OF8hhnps92A-HlnSBqu2gz2VoC17KkztLpKvmv1Qf_2vsu6j43XqIO6tFdQ_l9LiAoo4ADhkIgWIBKipzHeOJwdHoEbxcrqbYQLOXeMYxmBXABiC2YBxXq3dYggcGBpqKfdGKqL-WEPZRfjwZ6wOEIe-ERXjKhIxx31jgKqjhzCdxzMuMHqICjPrwZaHyMcwG_Ojv0-doK-q1msNmvd04RtuQBQsC2QnKJ68zfWqhSiLP0ozB6GHd0_QFNbT33w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2015+Signal+Processing+Symposium+%28SPSympo%29&rft.atitle=Parameters+analyzed+of+Higuchi%27s+fractal+dimension+for+EEG+brain+signals&rft.au=Flores+Vega%2C+Christian&rft.au=Noel%2C+Julien&rft.date=2015-06-01&rft.pub=Warsaw+University+of+Technology&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FSPS.2015.7168285&rft.externalDocID=7168285 |