Parameters analyzed of Higuchi's fractal dimension for EEG brain signals

Due to the stochastic nature of EEG signals, various nonlinear patterns and methods have been applied in order to obtain characteristic understanding of their dynamic behavior [6]. The Fractal Dimension (FD) is an appropriate tool to analyzed EEG signals and can be calculated by means of the Higuchi...

Full description

Saved in:
Bibliographic Details
Published in2015 Signal Processing Symposium (SPSympo) pp. 1 - 5
Main Authors Flores Vega, Christian, Noel, Julien
Format Conference Proceeding
LanguageEnglish
Published Warsaw University of Technology 01.06.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Due to the stochastic nature of EEG signals, various nonlinear patterns and methods have been applied in order to obtain characteristic understanding of their dynamic behavior [6]. The Fractal Dimension (FD) is an appropriate tool to analyzed EEG signals and can be calculated by means of the Higuchi's algorithm. Nevertheless, this algorithm depends of the k parameter to improve the speed of calculation. The aim of this work is to analyze the sensitivity of the k parameter due to segmentation, overlap, and noise over a signal. After that, with a better k parameter we applied the FD on EEG brain signals recorded while subjects were executing cognitive task. To analyze the statistical differences for each cognitive mental task, the hypothesis Wilcoxon signed-rank test was applied. The results for all tested brain bands used in this study reported a statistical difference (p <; 0.05) in 9 out of 10 pairs of mental tasks. The proposed approach reported is a good tool for cognitive tasks discrimination. We have also determine better k parameter for different conditions therefore these results can be used for future studies.
AbstractList Due to the stochastic nature of EEG signals, various nonlinear patterns and methods have been applied in order to obtain characteristic understanding of their dynamic behavior [6]. The Fractal Dimension (FD) is an appropriate tool to analyzed EEG signals and can be calculated by means of the Higuchi's algorithm. Nevertheless, this algorithm depends of the k parameter to improve the speed of calculation. The aim of this work is to analyze the sensitivity of the k parameter due to segmentation, overlap, and noise over a signal. After that, with a better k parameter we applied the FD on EEG brain signals recorded while subjects were executing cognitive task. To analyze the statistical differences for each cognitive mental task, the hypothesis Wilcoxon signed-rank test was applied. The results for all tested brain bands used in this study reported a statistical difference (p <; 0.05) in 9 out of 10 pairs of mental tasks. The proposed approach reported is a good tool for cognitive tasks discrimination. We have also determine better k parameter for different conditions therefore these results can be used for future studies.
Author Noel, Julien
Flores Vega, Christian
Author_xml – sequence: 1
  givenname: Christian
  surname: Flores Vega
  fullname: Flores Vega, Christian
  email: cflores@utec.edu.pe
  organization: Sch. of Electr. Eng., Univ. de Ing. y Tecnol., Lima, Peru
– sequence: 2
  givenname: Julien
  surname: Noel
  fullname: Noel, Julien
  email: jnoel@utec.edu.pe
  organization: Sch. of Energy Eng., Univ. de Ing. y Tecnol., Lima, Peru
BookMark eNotj0FLwzAYQCPoQefugpfcPLX2S5omOcqoqzBwMD2PL-mXGVhTSeth_noH7vRO78G7Y9dpTMTYA1QlQGWfd9tdKSpQpYbGCKOu2NJqY6Q2UMumqm9Zt8WMA82UJ44Jj6df6vkYeBcPP_4rPk08ZPQzHnkfB0pTHBMPY-Ztu-YuY0x8ioezN92zm3AGLS9csM_X9mPVFZv39dvqZVNEEHIuFOggpJTKVI1GE0Qg8MqZmjxasgSgVa2kra12EoQWQvsenTNBC--tkwv2-N-NRLT_znHAfNpf_uQf-_NIlQ
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/SPS.2015.7168285
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9788378143604
8378143600
EndPage 5
ExternalDocumentID 7168285
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i123t-517f233358067a8f2fe1c5b84eca9e9e11754539497b3127227cdabb8f72cc9b3
IEDL.DBID RIE
IngestDate Thu Jun 29 18:38:41 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i123t-517f233358067a8f2fe1c5b84eca9e9e11754539497b3127227cdabb8f72cc9b3
PageCount 5
ParticipantIDs ieee_primary_7168285
PublicationCentury 2000
PublicationDate 20150601
PublicationDateYYYYMMDD 2015-06-01
PublicationDate_xml – month: 06
  year: 2015
  text: 20150601
  day: 01
PublicationDecade 2010
PublicationTitle 2015 Signal Processing Symposium (SPSympo)
PublicationTitleAbbrev SPS
PublicationYear 2015
Publisher Warsaw University of Technology
Publisher_xml – name: Warsaw University of Technology
Score 1.621063
Snippet Due to the stochastic nature of EEG signals, various nonlinear patterns and methods have been applied in order to obtain characteristic understanding of their...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms cognitive task
EEG signals
Electrodes
Electroencephalography
Fractal Dimension
Fractals
Higuchi's method
Prediction algorithms
Signal to noise ratio
Time series analysis
Title Parameters analyzed of Higuchi's fractal dimension for EEG brain signals
URI https://ieeexplore.ieee.org/document/7168285
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NSwMxEB3anjyptOI3OQhe3G2bZDebs7QuQqVQC72VJDuRorSi20t_vZndtqJ48BZCICETmMnMe28Abrw2XFihIiOLLJKGZ5FFAo17IW3itMNKbX_0lOZT-ThLZg2423NhELECn2FMw6qWX6zcmlJl3RDbk-BaE5rh41ZztXaVx57uTsYTgmol8XbZj34plbsYHsJot1GNEnmN16WN3eaXBuN_T3IEnW9iHhvvXc4xNHDZhnxsCGFFMpnMkMbIBgu28ixfvFCnk9tP5okKZd5YQVL-lB5jIVRlg8EDs9QhghGIIzzDDkyHg-f7PNo2SIgWweGUUdJXngtBlcxUmcxzj32X2EyiMxo1kgynTISWWlnR54pz5QpjbeYVd05bcQKt5WqJp8DIKibEP85nUurUh7DOCK9lyotC96Q4gzbdwvy91sCYby_g_O_pCzggS9SQqktolR9rvArOu7TXldW-AERDm6Q
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1dT8IwFG0QH_RJDRi_7YPGpw1ou48--KTgkI-QAAlv2HatIRowMmLkt_hX_G_2joHR-Eri27Isy257t571nnsOQheGC0IlDRzB4tBhgoSO1EAaN5RJT3GlU7X9VtuP-ux-4A1y6GPVC6O1Tsln2oXDtJYfT9QMtspKFtuD4FpGoWzo9zf7gza9rt_a2bwkpFbt3URO5iHgjOw3OXG8SmAIpVDs8wMRGmJ0RXkyZFoJrrkGpUrmUc54IGmFBIQEKhZShiYgSnFJ7X030Ka9xiOL7rBlrbPMS91OF8hhnps92A-HlnSBqu2gz2VoC17KkztLpKvmv1Qf_2vsu6j43XqIO6tFdQ_l9LiAoo4ADhkIgWIBKipzHeOJwdHoEbxcrqbYQLOXeMYxmBXABiC2YBxXq3dYggcGBpqKfdGKqL-WEPZRfjwZ6wOEIe-ERXjKhIxx31jgKqjhzCdxzMuMHqICjPrwZaHyMcwG_Ojv0-doK-q1msNmvd04RtuQBQsC2QnKJ68zfWqhSiLP0ozB6GHd0_QFNbT33w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2015+Signal+Processing+Symposium+%28SPSympo%29&rft.atitle=Parameters+analyzed+of+Higuchi%27s+fractal+dimension+for+EEG+brain+signals&rft.au=Flores+Vega%2C+Christian&rft.au=Noel%2C+Julien&rft.date=2015-06-01&rft.pub=Warsaw+University+of+Technology&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FSPS.2015.7168285&rft.externalDocID=7168285