Meridian ECG information transmission system modeling using NARX neural network

With the increasing death number of cardiovascular disease, it is significant to study ECG signals at meridian acupoints for developing new alternative and complementary therapies for chronic cardiovascular diseases. Therefore, an ECG measuring experiment at acupoints of the human meridian is firstl...

Full description

Saved in:
Bibliographic Details
Published in2016 IEEE/ACIS 15th International Conference on Computer and Information Science (ICIS) pp. 1 - 6
Main Authors Hong He, Xiaowen Yan, Wei Wei
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.06.2016
Subjects
Online AccessGet full text
DOI10.1109/ICIS.2016.7550775

Cover

Loading…
Abstract With the increasing death number of cardiovascular disease, it is significant to study ECG signals at meridian acupoints for developing new alternative and complementary therapies for chronic cardiovascular diseases. Therefore, an ECG measuring experiment at acupoints of the human meridian is firstly carried out for obtaining information transmission data of the meridian system. Then according to the nonlinear characteristics of the meridian, a nonlinear autoregressive with exogeneous inputs (NARX) network is established for the modeling of meridian information transmission system. The analysis results of acupoint ECG data of ten subjects show that the NARX model outperforms the autoregressive with exogenous input (ARX) model and autoregressive and moving average model with exogenous input (ARMAX) in the ECG signal prediction at meridian acupoints. The prediction accuracy of the NARX neural network model for meridian ECG signal is larger than 0.98.
AbstractList With the increasing death number of cardiovascular disease, it is significant to study ECG signals at meridian acupoints for developing new alternative and complementary therapies for chronic cardiovascular diseases. Therefore, an ECG measuring experiment at acupoints of the human meridian is firstly carried out for obtaining information transmission data of the meridian system. Then according to the nonlinear characteristics of the meridian, a nonlinear autoregressive with exogeneous inputs (NARX) network is established for the modeling of meridian information transmission system. The analysis results of acupoint ECG data of ten subjects show that the NARX model outperforms the autoregressive with exogenous input (ARX) model and autoregressive and moving average model with exogenous input (ARMAX) in the ECG signal prediction at meridian acupoints. The prediction accuracy of the NARX neural network model for meridian ECG signal is larger than 0.98.
Author Hong He
Wei Wei
Xiaowen Yan
Author_xml – sequence: 1
  surname: Hong He
  fullname: Hong He
  email: honghe_aca2@163.com
  organization: Coll. of Inf., Mech. & Electr. Eng., Shanghai Normal Univ., Shanghai, China
– sequence: 2
  surname: Xiaowen Yan
  fullname: Xiaowen Yan
  organization: Coll. of Inf., Mech. & Electr. Eng., Shanghai Normal Univ., Shanghai, China
– sequence: 3
  surname: Wei Wei
  fullname: Wei Wei
  organization: Coll. of Inf., Mech. & Electr. Eng., Shanghai Normal Univ., Shanghai, China
BookMark eNotj11LwzAYRiPohc79APEmf6A1H03SXo4yZ2E62BS8G2-atxJsU0k6ZP_eDXdzDufmgeeOXIcxICEPnOWcs-qpqZtdLhjXuVGKGaOuyLwyJVesYqxkWt6SzStG7zwEuqxX1IdujANMfgx0ihDS4FM6RzqmCQc6jA57H77oIZ35tth-0oCHCP1J0-8Yv-_JTQd9wvnFM_LxvHyvX7L1ZtXUi3XmuZBTVhjNsASDzopCtdJCy0sQ3HSqBLSSO-GUwtYqB1KrwlouZaW1QtG5zhRyRh7_dz0i7n-iHyAe95eb8g9OFkzx
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
ESBDL
RIE
RIL
DOI 10.1109/ICIS.2016.7550775
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore Open Access Journals
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781509008063
1509008063
EndPage 6
ExternalDocumentID 7550775
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
ESBDL
RIE
RIL
ID FETCH-LOGICAL-i123t-4760e8a7edb245c3bac18a217f58aeb31d2d55ecb5da3654bb1339665e2fdf743
IEDL.DBID RIE
IngestDate Thu Jun 29 18:36:00 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i123t-4760e8a7edb245c3bac18a217f58aeb31d2d55ecb5da3654bb1339665e2fdf743
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/7550775
PageCount 6
ParticipantIDs ieee_primary_7550775
PublicationCentury 2000
PublicationDate 20160601
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 06
  year: 2016
  text: 20160601
  day: 01
PublicationDecade 2010
PublicationTitle 2016 IEEE/ACIS 15th International Conference on Computer and Information Science (ICIS)
PublicationTitleAbbrev ICIS
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.6072466
Snippet With the increasing death number of cardiovascular disease, it is significant to study ECG signals at meridian acupoints for developing new alternative and...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Cardiovascular diseases
Computational modeling
Data models
ECG signal
Electrocardiography
Information processing
information transmission system
meridian
modeling
Pollution measurement
Predictive models
Title Meridian ECG information transmission system modeling using NARX neural network
URI https://ieeexplore.ieee.org/document/7550775
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH5sO3lS2cTf5ODRdGuTNNlRxuYmbIo62G00yauIsol0F_96X9o6UTx4aikJLe8rfHnJ974HcCES5fvaIpdCOy4JZW688dwKa4wUuRdxqHeeztLxXN4s1KIBl9taGEQsxWcYhdvyLN-v3SZslXV1MN_SqglNStyqWq36oDLu9buTweQhaLXSqB73o2FKyRejXZh-vamSibxEm8JG7uOXCeN_P2UPOt-Veexuyzn70MBVG26n9BsFnNlwcM1qK9QQcFYEJiIkw5YYq0ybWdn7hiazIHl_YrOr-wULrpbZK11KTXgH5qPh42DM60YJ_JmIp-BSpz00mUZvE6mcsJmLTUbJRq5MRtly7BOvFDqrfCZSJa2lzJTyHIVJ7nNaQxxAa7Ve4SEwQ4SvvZXeYSytkH2k9YrqJTQVcxp8BO0QjOVb5YWxrONw_PfjE9gJgFTSqlNoFe8bPCMSL-x5id4nYJegSA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED2VMsAEqEV844GRpE1sJ-6IqpYWmoKglbpVsX1BCNQilC78es5JKAIxMCWKbCW6F-n57HfvAC54KG0n1ugJHhtPEMqessp6mmulBM8sD1y9czKOBlNxM5OzGlyua2EQsRCfoe9ui7N8uzQrt1XWip35Viw3YJN4XwZltVZ1VBm0O61hd_jo1FqRX4380TKlYIz-DiRf7yqFIi_-Kte--fhlw_jfj9mF5ndtHrtfs84e1HDRgLuEfiSHNOt1r1llhupCznLHRYSl2xRjpW0zK7rf0GTmRO9PbHz1MGPO1zJ9pUuhCm_CtN-bdAde1SrBeybqyT0RR21UaYxWh0IarlMTqJTSjUyqlPLlwIZWSjRa2pRHUmhNuSllOhLDzGa0itiH-mK5wANgiig_tlpYg4HQXHSQViyyHdJUzGjwITRcMOZvpRvGvIrD0d-Pz2FrMElG89FwfHsM2w6cUmh1AvX8fYWnROm5PiuQ_ATq76OR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+IEEE%2FACIS+15th+International+Conference+on+Computer+and+Information+Science+%28ICIS%29&rft.atitle=Meridian+ECG+information+transmission+system+modeling+using+NARX+neural+network&rft.au=Hong+He&rft.au=Xiaowen+Yan&rft.au=Wei+Wei&rft.date=2016-06-01&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FICIS.2016.7550775&rft.externalDocID=7550775