Meridian ECG information transmission system modeling using NARX neural network
With the increasing death number of cardiovascular disease, it is significant to study ECG signals at meridian acupoints for developing new alternative and complementary therapies for chronic cardiovascular diseases. Therefore, an ECG measuring experiment at acupoints of the human meridian is firstl...
Saved in:
Published in | 2016 IEEE/ACIS 15th International Conference on Computer and Information Science (ICIS) pp. 1 - 6 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2016
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/ICIS.2016.7550775 |
Cover
Loading…
Abstract | With the increasing death number of cardiovascular disease, it is significant to study ECG signals at meridian acupoints for developing new alternative and complementary therapies for chronic cardiovascular diseases. Therefore, an ECG measuring experiment at acupoints of the human meridian is firstly carried out for obtaining information transmission data of the meridian system. Then according to the nonlinear characteristics of the meridian, a nonlinear autoregressive with exogeneous inputs (NARX) network is established for the modeling of meridian information transmission system. The analysis results of acupoint ECG data of ten subjects show that the NARX model outperforms the autoregressive with exogenous input (ARX) model and autoregressive and moving average model with exogenous input (ARMAX) in the ECG signal prediction at meridian acupoints. The prediction accuracy of the NARX neural network model for meridian ECG signal is larger than 0.98. |
---|---|
AbstractList | With the increasing death number of cardiovascular disease, it is significant to study ECG signals at meridian acupoints for developing new alternative and complementary therapies for chronic cardiovascular diseases. Therefore, an ECG measuring experiment at acupoints of the human meridian is firstly carried out for obtaining information transmission data of the meridian system. Then according to the nonlinear characteristics of the meridian, a nonlinear autoregressive with exogeneous inputs (NARX) network is established for the modeling of meridian information transmission system. The analysis results of acupoint ECG data of ten subjects show that the NARX model outperforms the autoregressive with exogenous input (ARX) model and autoregressive and moving average model with exogenous input (ARMAX) in the ECG signal prediction at meridian acupoints. The prediction accuracy of the NARX neural network model for meridian ECG signal is larger than 0.98. |
Author | Hong He Wei Wei Xiaowen Yan |
Author_xml | – sequence: 1 surname: Hong He fullname: Hong He email: honghe_aca2@163.com organization: Coll. of Inf., Mech. & Electr. Eng., Shanghai Normal Univ., Shanghai, China – sequence: 2 surname: Xiaowen Yan fullname: Xiaowen Yan organization: Coll. of Inf., Mech. & Electr. Eng., Shanghai Normal Univ., Shanghai, China – sequence: 3 surname: Wei Wei fullname: Wei Wei organization: Coll. of Inf., Mech. & Electr. Eng., Shanghai Normal Univ., Shanghai, China |
BookMark | eNotj11LwzAYRiPohc79APEmf6A1H03SXo4yZ2E62BS8G2-atxJsU0k6ZP_eDXdzDufmgeeOXIcxICEPnOWcs-qpqZtdLhjXuVGKGaOuyLwyJVesYqxkWt6SzStG7zwEuqxX1IdujANMfgx0ihDS4FM6RzqmCQc6jA57H77oIZ35tth-0oCHCP1J0-8Yv-_JTQd9wvnFM_LxvHyvX7L1ZtXUi3XmuZBTVhjNsASDzopCtdJCy0sQ3HSqBLSSO-GUwtYqB1KrwlouZaW1QtG5zhRyRh7_dz0i7n-iHyAe95eb8g9OFkzx |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK ESBDL RIE RIL |
DOI | 10.1109/ICIS.2016.7550775 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore Open Access Journals IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9781509008063 1509008063 |
EndPage | 6 |
ExternalDocumentID | 7550775 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK ESBDL RIE RIL |
ID | FETCH-LOGICAL-i123t-4760e8a7edb245c3bac18a217f58aeb31d2d55ecb5da3654bb1339665e2fdf743 |
IEDL.DBID | RIE |
IngestDate | Thu Jun 29 18:36:00 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i123t-4760e8a7edb245c3bac18a217f58aeb31d2d55ecb5da3654bb1339665e2fdf743 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/7550775 |
PageCount | 6 |
ParticipantIDs | ieee_primary_7550775 |
PublicationCentury | 2000 |
PublicationDate | 20160601 |
PublicationDateYYYYMMDD | 2016-06-01 |
PublicationDate_xml | – month: 06 year: 2016 text: 20160601 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | 2016 IEEE/ACIS 15th International Conference on Computer and Information Science (ICIS) |
PublicationTitleAbbrev | ICIS |
PublicationYear | 2016 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.6072466 |
Snippet | With the increasing death number of cardiovascular disease, it is significant to study ECG signals at meridian acupoints for developing new alternative and... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Cardiovascular diseases Computational modeling Data models ECG signal Electrocardiography Information processing information transmission system meridian modeling Pollution measurement Predictive models |
Title | Meridian ECG information transmission system modeling using NARX neural network |
URI | https://ieeexplore.ieee.org/document/7550775 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH5sO3lS2cTf5ODRdGuTNNlRxuYmbIo62G00yauIsol0F_96X9o6UTx4aikJLe8rfHnJ974HcCES5fvaIpdCOy4JZW688dwKa4wUuRdxqHeeztLxXN4s1KIBl9taGEQsxWcYhdvyLN-v3SZslXV1MN_SqglNStyqWq36oDLu9buTweQhaLXSqB73o2FKyRejXZh-vamSibxEm8JG7uOXCeN_P2UPOt-Veexuyzn70MBVG26n9BsFnNlwcM1qK9QQcFYEJiIkw5YYq0ybWdn7hiazIHl_YrOr-wULrpbZK11KTXgH5qPh42DM60YJ_JmIp-BSpz00mUZvE6mcsJmLTUbJRq5MRtly7BOvFDqrfCZSJa2lzJTyHIVJ7nNaQxxAa7Ve4SEwQ4SvvZXeYSytkH2k9YrqJTQVcxp8BO0QjOVb5YWxrONw_PfjE9gJgFTSqlNoFe8bPCMSL-x5id4nYJegSA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwED2VMsAEqEV844GRpE1sJ-6IqpYWmoKglbpVsX1BCNQilC78es5JKAIxMCWKbCW6F-n57HfvAC54KG0n1ugJHhtPEMqessp6mmulBM8sD1y9czKOBlNxM5OzGlyua2EQsRCfoe9ui7N8uzQrt1XWip35Viw3YJN4XwZltVZ1VBm0O61hd_jo1FqRX4380TKlYIz-DiRf7yqFIi_-Kte--fhlw_jfj9mF5ndtHrtfs84e1HDRgLuEfiSHNOt1r1llhupCznLHRYSl2xRjpW0zK7rf0GTmRO9PbHz1MGPO1zJ9pUuhCm_CtN-bdAde1SrBeybqyT0RR21UaYxWh0IarlMTqJTSjUyqlPLlwIZWSjRa2pRHUmhNuSllOhLDzGa0itiH-mK5wANgiig_tlpYg4HQXHSQViyyHdJUzGjwITRcMOZvpRvGvIrD0d-Pz2FrMElG89FwfHsM2w6cUmh1AvX8fYWnROm5PiuQ_ATq76OR |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2016+IEEE%2FACIS+15th+International+Conference+on+Computer+and+Information+Science+%28ICIS%29&rft.atitle=Meridian+ECG+information+transmission+system+modeling+using+NARX+neural+network&rft.au=Hong+He&rft.au=Xiaowen+Yan&rft.au=Wei+Wei&rft.date=2016-06-01&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FICIS.2016.7550775&rft.externalDocID=7550775 |