Handwritten digits recognition base on improved LeNet5
LeNet5 is a kind of Convolutional Neural Network (CNN) and has been used in handwritten digits recognition. In order to improve the recognition rate of LeNet5 in handwritten digits recognition, this article presents an improved LeNet5 by replacing the last two layers of the LeNet5 structure with Sup...
Saved in:
Published in | The 27th Chinese Control and Decision Conference (2015 CCDC) pp. 4871 - 4875 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.05.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | LeNet5 is a kind of Convolutional Neural Network (CNN) and has been used in handwritten digits recognition. In order to improve the recognition rate of LeNet5 in handwritten digits recognition, this article presents an improved LeNet5 by replacing the last two layers of the LeNet5 structure with Support Vector Machines (SVM) classifier. And LeNet5 performs as a trainable feature extractor and SVM works as a recognizer. To accelerate the network's convergence speed, the stochastic diagonal Levenberg-Marquardt algorithm is introduced to train the network. A series of studies has been conducted on the MINST digit database to test and evaluate the proposed method performance. The results show that this method can outperform both SVMs and LeNet5. Moreover, the improved method gets a faster convergence speed in training process. |
---|---|
AbstractList | LeNet5 is a kind of Convolutional Neural Network (CNN) and has been used in handwritten digits recognition. In order to improve the recognition rate of LeNet5 in handwritten digits recognition, this article presents an improved LeNet5 by replacing the last two layers of the LeNet5 structure with Support Vector Machines (SVM) classifier. And LeNet5 performs as a trainable feature extractor and SVM works as a recognizer. To accelerate the network's convergence speed, the stochastic diagonal Levenberg-Marquardt algorithm is introduced to train the network. A series of studies has been conducted on the MINST digit database to test and evaluate the proposed method performance. The results show that this method can outperform both SVMs and LeNet5. Moreover, the improved method gets a faster convergence speed in training process. |
Author | Panna Jiao Naigong Yu Yuling Zheng |
Author_xml | – sequence: 1 surname: Naigong Yu fullname: Naigong Yu email: Yunaigong@bjut.edu.cn organization: Beijing Univ. of Technol., Beijing, China – sequence: 2 surname: Panna Jiao fullname: Panna Jiao email: Pannajiao@126.com organization: Beijing Univ. of Technol., Beijing, China – sequence: 3 surname: Yuling Zheng fullname: Yuling Zheng email: 965290419@qq.com organization: Beijing Univ. of Technol., Beijing, China |
BookMark | eNotj81KxDAUhSOM4Dj2AcRNXqA1N7_NUqrOCEU3uh6S5maIOOnQBsW3t-CsPjgHPs65Jqs8ZiTkFlgDwOx91z12DWegGgOaG6svSGVNC9JYaxgYuyJrsLKtrRT2ilTz_MkYWxIjtVgTvXM5_EypFMw0pEMqM51wGA85lTRm6t2MdGE6nqbxGwPt8RWLuiGX0X3NWJ25IR_PT-_dru7fti_dQ18n4KLU3LfBOKnQ8DAAD1pGGwcxaAnee3ACRFxarZaBrfGMKyUV93zQUYBkUWzI3b83IeL-NKWjm37356fiDwLYR8I |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/CCDC.2015.7162796 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Business |
EISBN | 9781479970179 9781479970162 1479970174 1479970166 |
EndPage | 4875 |
ExternalDocumentID | 7162796 |
Genre | orig-research |
GroupedDBID | 29B 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL RNS |
ID | FETCH-LOGICAL-i123t-2b8d7a45e72dc12d64f9fc3c641bbb1a313f45e6594887b0255452b2c6f3140f3 |
IEDL.DBID | RIE |
ISSN | 1948-9439 |
IngestDate | Wed Aug 27 02:19:53 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i123t-2b8d7a45e72dc12d64f9fc3c641bbb1a313f45e6594887b0255452b2c6f3140f3 |
PageCount | 5 |
ParticipantIDs | ieee_primary_7162796 |
PublicationCentury | 2000 |
PublicationDate | 20150501 |
PublicationDateYYYYMMDD | 2015-05-01 |
PublicationDate_xml | – month: 05 year: 2015 text: 20150501 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | The 27th Chinese Control and Decision Conference (2015 CCDC) |
PublicationTitleAbbrev | CCDC |
PublicationYear | 2015 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0001947463 ssj0066300 |
Score | 1.6808418 |
Snippet | LeNet5 is a kind of Convolutional Neural Network (CNN) and has been used in handwritten digits recognition. In order to improve the recognition rate of LeNet5... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 4871 |
SubjectTerms | convolutional neural networks Handwriting recognition Handwritten digit recognition Stochastic diagonal Levenberg-Marquardt Support vectors machines |
Title | Handwritten digits recognition base on improved LeNet5 |
URI | https://ieeexplore.ieee.org/document/7162796 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEB3aHkQvalvxmxw8mrSb_Uj2HC1FtHiw0FvJfkkQUmlTBH-9u5u0VfHgKSGBsOySffNm3rwFuDFE4oTyPGSaWYIiYhqmCKNQqhwxbjfA1HiV74SNp-RhRmctuN32wmitvfhMR-7W1_LVQq5dqmzg3I4SztrQtsSt7tXa5VM4Sbyze70LM2cl5SvKxP7QFnWbiiYa8kGW3WVO1EWj5oM_TlbxwDI6hKfNkGo9yVu0rkQkP3-5Nf53zEfQ37XwBc9bcDqGli67sLeRuXfh4JsRYQ_YOC_Vx7KobAQdqOK1qFbBVlq0KAOHdYG9Fj4FoVXwqCe6on2Yju5fsnHYnKgQFhahqjAWqUpyQnUSK4lixYjhRmLJCBJCoBwjbOxb5jxc0kQ4vkFoLGLJDLZMzOAT6JSLUp9CMMwVxULzoU4ZUamwYQ43NnxTKVfScsYz6LnJmL_XphnzZh7O_358AftuQWol4SV0quVaX1m0r8S1X-YvkSyk0Q |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8NAFH7UCi4Xta24m4NHkzaZJZlztERti4cWeiuZJRKEVGqK4K93ZpK2Kh48JWQgDPOY-d7yvW8AbjIsUEhY6lJFdYDCA-JGPvJdIVOfMn0ARpll-Y5oMsGPUzJtwO26F0YpZclnyjOvtpYv52JpUmVdo3YUMroF2xr3SVB1a20yKgyHVtu9OoepEZOyNWWst7TG3bqm6fdYN47vYkPrIl79yx93q1ho6R_AcDWpilHy6i1L7onPX3qN_531IXQ2TXzO8xqejqChihbsrIjuLdj_JkXYBpqkhfxY5KX2oR2Zv-Tlu7MmF80Lx6Cdo5-5TUIo6QzUSJWkA5P-_ThO3PpOBTfXGFW6AY9kmGKiwkAKP5AUZywTSFDsc879FPko06PUqLhEITcRByYBDwTNkI7FMnQMzWJeqBNweqkkiCvWUxHFMuLa0WGZduBkxKTQUeMptM1izN4q2YxZvQ5nf3--ht1kPBzMBg-jp3PYM8apeIUX0CwXS3Wpsb_kV9bkX2KOqBs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=The+27th+Chinese+Control+and+Decision+Conference+%282015+CCDC%29&rft.atitle=Handwritten+digits+recognition+base+on+improved+LeNet5&rft.au=Naigong+Yu&rft.au=Panna+Jiao&rft.au=Yuling+Zheng&rft.date=2015-05-01&rft.pub=IEEE&rft.issn=1948-9439&rft.spage=4871&rft.epage=4875&rft_id=info:doi/10.1109%2FCCDC.2015.7162796&rft.externalDocID=7162796 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1948-9439&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1948-9439&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1948-9439&client=summon |