Handwritten digits recognition base on improved LeNet5

LeNet5 is a kind of Convolutional Neural Network (CNN) and has been used in handwritten digits recognition. In order to improve the recognition rate of LeNet5 in handwritten digits recognition, this article presents an improved LeNet5 by replacing the last two layers of the LeNet5 structure with Sup...

Full description

Saved in:
Bibliographic Details
Published inThe 27th Chinese Control and Decision Conference (2015 CCDC) pp. 4871 - 4875
Main Authors Naigong Yu, Panna Jiao, Yuling Zheng
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.05.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract LeNet5 is a kind of Convolutional Neural Network (CNN) and has been used in handwritten digits recognition. In order to improve the recognition rate of LeNet5 in handwritten digits recognition, this article presents an improved LeNet5 by replacing the last two layers of the LeNet5 structure with Support Vector Machines (SVM) classifier. And LeNet5 performs as a trainable feature extractor and SVM works as a recognizer. To accelerate the network's convergence speed, the stochastic diagonal Levenberg-Marquardt algorithm is introduced to train the network. A series of studies has been conducted on the MINST digit database to test and evaluate the proposed method performance. The results show that this method can outperform both SVMs and LeNet5. Moreover, the improved method gets a faster convergence speed in training process.
AbstractList LeNet5 is a kind of Convolutional Neural Network (CNN) and has been used in handwritten digits recognition. In order to improve the recognition rate of LeNet5 in handwritten digits recognition, this article presents an improved LeNet5 by replacing the last two layers of the LeNet5 structure with Support Vector Machines (SVM) classifier. And LeNet5 performs as a trainable feature extractor and SVM works as a recognizer. To accelerate the network's convergence speed, the stochastic diagonal Levenberg-Marquardt algorithm is introduced to train the network. A series of studies has been conducted on the MINST digit database to test and evaluate the proposed method performance. The results show that this method can outperform both SVMs and LeNet5. Moreover, the improved method gets a faster convergence speed in training process.
Author Panna Jiao
Naigong Yu
Yuling Zheng
Author_xml – sequence: 1
  surname: Naigong Yu
  fullname: Naigong Yu
  email: Yunaigong@bjut.edu.cn
  organization: Beijing Univ. of Technol., Beijing, China
– sequence: 2
  surname: Panna Jiao
  fullname: Panna Jiao
  email: Pannajiao@126.com
  organization: Beijing Univ. of Technol., Beijing, China
– sequence: 3
  surname: Yuling Zheng
  fullname: Yuling Zheng
  email: 965290419@qq.com
  organization: Beijing Univ. of Technol., Beijing, China
BookMark eNotj81KxDAUhSOM4Dj2AcRNXqA1N7_NUqrOCEU3uh6S5maIOOnQBsW3t-CsPjgHPs65Jqs8ZiTkFlgDwOx91z12DWegGgOaG6svSGVNC9JYaxgYuyJrsLKtrRT2ilTz_MkYWxIjtVgTvXM5_EypFMw0pEMqM51wGA85lTRm6t2MdGE6nqbxGwPt8RWLuiGX0X3NWJ25IR_PT-_dru7fti_dQ18n4KLU3LfBOKnQ8DAAD1pGGwcxaAnee3ACRFxarZaBrfGMKyUV93zQUYBkUWzI3b83IeL-NKWjm37356fiDwLYR8I
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CCDC.2015.7162796
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Business
EISBN 9781479970179
9781479970162
1479970174
1479970166
EndPage 4875
ExternalDocumentID 7162796
Genre orig-research
GroupedDBID 29B
6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i123t-2b8d7a45e72dc12d64f9fc3c641bbb1a313f45e6594887b0255452b2c6f3140f3
IEDL.DBID RIE
ISSN 1948-9439
IngestDate Wed Aug 27 02:19:53 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i123t-2b8d7a45e72dc12d64f9fc3c641bbb1a313f45e6594887b0255452b2c6f3140f3
PageCount 5
ParticipantIDs ieee_primary_7162796
PublicationCentury 2000
PublicationDate 20150501
PublicationDateYYYYMMDD 2015-05-01
PublicationDate_xml – month: 05
  year: 2015
  text: 20150501
  day: 01
PublicationDecade 2010
PublicationTitle The 27th Chinese Control and Decision Conference (2015 CCDC)
PublicationTitleAbbrev CCDC
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001947463
ssj0066300
Score 1.6808418
Snippet LeNet5 is a kind of Convolutional Neural Network (CNN) and has been used in handwritten digits recognition. In order to improve the recognition rate of LeNet5...
SourceID ieee
SourceType Publisher
StartPage 4871
SubjectTerms convolutional neural networks
Handwriting recognition
Handwritten digit recognition
Stochastic diagonal Levenberg-Marquardt
Support vectors machines
Title Handwritten digits recognition base on improved LeNet5
URI https://ieeexplore.ieee.org/document/7162796
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEB3aHkQvalvxmxw8mrSb_Uj2HC1FtHiw0FvJfkkQUmlTBH-9u5u0VfHgKSGBsOySffNm3rwFuDFE4oTyPGSaWYIiYhqmCKNQqhwxbjfA1HiV74SNp-RhRmctuN32wmitvfhMR-7W1_LVQq5dqmzg3I4SztrQtsSt7tXa5VM4Sbyze70LM2cl5SvKxP7QFnWbiiYa8kGW3WVO1EWj5oM_TlbxwDI6hKfNkGo9yVu0rkQkP3-5Nf53zEfQ37XwBc9bcDqGli67sLeRuXfh4JsRYQ_YOC_Vx7KobAQdqOK1qFbBVlq0KAOHdYG9Fj4FoVXwqCe6on2Yju5fsnHYnKgQFhahqjAWqUpyQnUSK4lixYjhRmLJCBJCoBwjbOxb5jxc0kQ4vkFoLGLJDLZMzOAT6JSLUp9CMMwVxULzoU4ZUamwYQ43NnxTKVfScsYz6LnJmL_XphnzZh7O_358AftuQWol4SV0quVaX1m0r8S1X-YvkSyk0Q
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8NAFH7UCi4Xta24m4NHkzaZJZlztERti4cWeiuZJRKEVGqK4K93ZpK2Kh48JWQgDPOY-d7yvW8AbjIsUEhY6lJFdYDCA-JGPvJdIVOfMn0ARpll-Y5oMsGPUzJtwO26F0YpZclnyjOvtpYv52JpUmVdo3YUMroF2xr3SVB1a20yKgyHVtu9OoepEZOyNWWst7TG3bqm6fdYN47vYkPrIl79yx93q1ho6R_AcDWpilHy6i1L7onPX3qN_531IXQ2TXzO8xqejqChihbsrIjuLdj_JkXYBpqkhfxY5KX2oR2Zv-Tlu7MmF80Lx6Cdo5-5TUIo6QzUSJWkA5P-_ThO3PpOBTfXGFW6AY9kmGKiwkAKP5AUZywTSFDsc879FPko06PUqLhEITcRByYBDwTNkI7FMnQMzWJeqBNweqkkiCvWUxHFMuLa0WGZduBkxKTQUeMptM1izN4q2YxZvQ5nf3--ht1kPBzMBg-jp3PYM8apeIUX0CwXS3Wpsb_kV9bkX2KOqBs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=The+27th+Chinese+Control+and+Decision+Conference+%282015+CCDC%29&rft.atitle=Handwritten+digits+recognition+base+on+improved+LeNet5&rft.au=Naigong+Yu&rft.au=Panna+Jiao&rft.au=Yuling+Zheng&rft.date=2015-05-01&rft.pub=IEEE&rft.issn=1948-9439&rft.spage=4871&rft.epage=4875&rft_id=info:doi/10.1109%2FCCDC.2015.7162796&rft.externalDocID=7162796
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1948-9439&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1948-9439&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1948-9439&client=summon