Machine learning approach for detection of cyber-aggressive comments by peers on social media network

The fast growing use of social networking sites among the teens have made them vulnerable to get exposed to bullying. Cyberbullying is the use of computers and mobiles for bullying activities. Comments containing abusive words effect psychology of teens and demoralizes them. In this paper we have de...

Full description

Saved in:
Bibliographic Details
Published in2015 International Conference on Advances in Computing, Communications and Informatics (ICACCI) pp. 2354 - 2358
Main Authors Chavan, Vikas S., Shylaja, S. S.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.08.2015
Subjects
Online AccessGet full text
ISBN9781479987900
1479987905
DOI10.1109/ICACCI.2015.7275970

Cover

Abstract The fast growing use of social networking sites among the teens have made them vulnerable to get exposed to bullying. Cyberbullying is the use of computers and mobiles for bullying activities. Comments containing abusive words effect psychology of teens and demoralizes them. In this paper we have devised methods to detect cyberbullying using supervised learning techniques. We present two new hypotheses for feature extraction to detect offensive comments directed towards peers which are perceived more negatively and result in cyberbullying. Our initial experiments show that using features from our hypotheses in addition to traditional feature extraction techniques like TF-IDF and N-gram increases the accuracy of the system.
AbstractList The fast growing use of social networking sites among the teens have made them vulnerable to get exposed to bullying. Cyberbullying is the use of computers and mobiles for bullying activities. Comments containing abusive words effect psychology of teens and demoralizes them. In this paper we have devised methods to detect cyberbullying using supervised learning techniques. We present two new hypotheses for feature extraction to detect offensive comments directed towards peers which are perceived more negatively and result in cyberbullying. Our initial experiments show that using features from our hypotheses in addition to traditional feature extraction techniques like TF-IDF and N-gram increases the accuracy of the system.
Author Shylaja, S. S.
Chavan, Vikas S.
Author_xml – sequence: 1
  givenname: Vikas S.
  surname: Chavan
  fullname: Chavan, Vikas S.
  email: chavanvikas57@gmail.com
  organization: Dept. of Inf. Sci. & Eng., P.E.S Inst. of Technol., Bangalore, India
– sequence: 2
  givenname: S. S.
  surname: Shylaja
  fullname: Shylaja, S. S.
  email: shylaja.sharath@pes.edu
  organization: Dept. of Inf. Sci. & Eng., P.E.S Inst. of Technol., Bangalore, India
BookMark eNpVkM9KxDAYxCPqQdd9gr3kBbomado0Ryn-WVjxoufla_KlBtukJEXp21twL56GGX4Mw9ySqxADErLjbM850_eH9qFtD3vBeLVXQlVasQuy1arhUmndKC3k5T_P2A3BVzCfPiAdEFLwoacwTSmuIXUxUYszmtnHQKOjZukwFdD3CXP230hNHEcMc6bdQifElOkK5mg8DHRE64EGnH9i-roj1w6GjNuzbsjH0-N7-1Ic357X2cfCc1HOhVBaclm7irmKd7qpS2MlE8IqI9ExISurrO6gUnUpeSPRlCAtQGeEsp2DckN2f70eEU9T8iOk5XQ-o_wFNJNYPw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICACCI.2015.7275970
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781479987924
1479987921
EndPage 2358
ExternalDocumentID 7275970
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i123t-2794146f50f51b9863cd4022d7c4ef0245d7d9ba57634184ec3a4daabc27dbfa3
IEDL.DBID RIE
ISBN 9781479987900
1479987905
IngestDate Wed Jun 26 19:24:35 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i123t-2794146f50f51b9863cd4022d7c4ef0245d7d9ba57634184ec3a4daabc27dbfa3
PageCount 5
ParticipantIDs ieee_primary_7275970
PublicationCentury 2000
PublicationDate 20150801
PublicationDateYYYYMMDD 2015-08-01
PublicationDate_xml – month: 08
  year: 2015
  text: 20150801
  day: 01
PublicationDecade 2010
PublicationTitle 2015 International Conference on Advances in Computing, Communications and Informatics (ICACCI)
PublicationTitleAbbrev ICACCI
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8645881
Snippet The fast growing use of social networking sites among the teens have made them vulnerable to get exposed to bullying. Cyberbullying is the use of computers and...
SourceID ieee
SourceType Publisher
StartPage 2354
SubjectTerms Accuracy
cyber-aggressive
Dictionaries
Feature extraction
Logistics
machine learning
Machine learning algorithms
supervised
Support vector machines
Title Machine learning approach for detection of cyber-aggressive comments by peers on social media network
URI https://ieeexplore.ieee.org/document/7275970
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8MwGA5zJ08qm_hNDh5N1zbJ0h6lODZh4sHBbiMfb4YI3ZDuMH-9b9NufuDBW1vSEpI0T97keZ6XkFvtwPjUeeadkkyAi1nmM80kR3zViZdZUgucp0_D8Uw8zuW8Q-72WhgACOQziOrLcJbvVnZTb5UNEGtx_YsB-gEOs29aLYUxQ200tbNwau_j1mUoifPBpLgviklN5ZJR-5kf-VQCnIyOyHRXkYZF8hZtKhPZj18ejf-t6THpfwn36PMekk5IB8oegWkgTAJtM0Qs6c5InOKKlTqoAh2rpCtP7dbAO9PLEIXjREhxQAYRHDVbugZcK1Is2Gy006A6oWVDJO-T2ejhpRizNrsCe0W0qliKfyJOk17GXiYmz4bcOgwmU6esAF-fyDrlcqMxIEGkywRYroXT2thUOeM1PyXdclXCGaFKZ4Jbng_xFSG1NEoLz7NMWG6GisM56dVNtFg3BhqLtnUu_n58SQ7rbmpYdlekW71v4BqRvzI3ocs_AfdIrd8
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09b8IwELUQHdqpraDqdz10bEIS20kYK1QELUEdQGJD_jijqlJAKAz01_fiBPqhDt2SKIksO_G7s997R8i9NKBsZKxnTSI8DibwUptKTzDEVxlakYalwDkbx4Mpf56JWYM87LUwAODIZ-CXh24v3yz1plwq6yDWYvyLCfoB4j4X39RaCWYNpdXUzsSpPg9qn6Ew6HaGvcdeb1iSuYRfv-hHRRUHKP1jku2aUvFI3v1NoXz98cul8b9tPSHtL-kefd2D0ilpQN4ikDnKJNC6RsSC7qzEKcas1EDhCFk5XVqqtwrWnly4PBynQoqfpJPBUbWlK8BokeKN1VI7dboTmldU8jaZ9p8mvYFX11fw3hCvCi_CfxEnSisCK0LVTWOmDaaTkUk0B1vuyZrEdJXElASxLuWgmeRGSqWjxCgr2Rlp5ssczglNZMqZZt0YH-FCCpVIblmacs1UnDC4IK2yi-arykJjXvfO5d-X78jhYJKN5qPh-OWKHJVDVnHurkmzWG_gBuOAQt264f8EQmaxLA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2015+International+Conference+on+Advances+in+Computing%2C+Communications+and+Informatics+%28ICACCI%29&rft.atitle=Machine+learning+approach+for+detection+of+cyber-aggressive+comments+by+peers+on+social+media+network&rft.au=Chavan%2C+Vikas+S.&rft.au=Shylaja%2C+S.+S.&rft.date=2015-08-01&rft.pub=IEEE&rft.isbn=9781479987900&rft.spage=2354&rft.epage=2358&rft_id=info:doi/10.1109%2FICACCI.2015.7275970&rft.externalDocID=7275970
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781479987900/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781479987900/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9781479987900/sc.gif&client=summon&freeimage=true