Optimization of stochastic fluid model using perturbation analysis: A manufacturingremanufacturing system with stochastic demand and stochastic returned products

In this paper, a stochastic fluid model is used to study a manufacturing/ remanufacturing system composed by two parallel machines, a serviceable inventory, a remanufacturing inventory and customers who demand a stochastic quantity of product. Stochastic fluid model is adopted to describe the system...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the 11th IEEE International Conference on Networking, Sensing and Control pp. 1 - 6
Main Authors Sadok, Turki, Olivier, Bistorin, Nidhal, Rezg
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.04.2014
Subjects
Online AccessGet full text
DOI10.1109/ICNSC.2014.6819590

Cover

Loading…
Abstract In this paper, a stochastic fluid model is used to study a manufacturing/ remanufacturing system composed by two parallel machines, a serviceable inventory, a remanufacturing inventory and customers who demand a stochastic quantity of product. Stochastic fluid model is adopted to describe the system and to take into account machine failure, stochastic demand, stochastic returned products and remanufacturing products. The goal of this paper is to evaluate the optimal serviceable inventory level which allows minimizing the sum of inventory and lost sales costs. Perturbation analysis is applied to the stochastic fluid model to optimize the considered system. The trajectories of the serviceable inventory level are studied and the perturbation analysis estimates are evaluated. The unbiasedness of these estimates is proved and then they are implemented in an optimization algorithm which determines the optimal serviceable inventory in the presence of stochastic returned products and stochastic demand.
AbstractList In this paper, a stochastic fluid model is used to study a manufacturing/ remanufacturing system composed by two parallel machines, a serviceable inventory, a remanufacturing inventory and customers who demand a stochastic quantity of product. Stochastic fluid model is adopted to describe the system and to take into account machine failure, stochastic demand, stochastic returned products and remanufacturing products. The goal of this paper is to evaluate the optimal serviceable inventory level which allows minimizing the sum of inventory and lost sales costs. Perturbation analysis is applied to the stochastic fluid model to optimize the considered system. The trajectories of the serviceable inventory level are studied and the perturbation analysis estimates are evaluated. The unbiasedness of these estimates is proved and then they are implemented in an optimization algorithm which determines the optimal serviceable inventory in the presence of stochastic returned products and stochastic demand.
Author Nidhal, Rezg
Sadok, Turki
Olivier, Bistorin
Author_xml – sequence: 1
  givenname: Turki
  surname: Sadok
  fullname: Sadok, Turki
  organization: LGIPM, Univ. de Lorraine, Metz, France
– sequence: 2
  givenname: Bistorin
  surname: Olivier
  fullname: Olivier, Bistorin
  organization: LGIPM, Univ. de Lorraine, Metz, France
– sequence: 3
  givenname: Rezg
  surname: Nidhal
  fullname: Nidhal, Rezg
  organization: LGIPM, Univ. de Lorraine, Metz, France
BookMark eNpVkE1OwzAQhY0EC1q4AGx8gRQ7dpyYXRXxU6miC2BdOfaYWkqcyHaEym24KanaRVmMnt7M995iZujS9x4QuqNkQSmRD6v67b1e5ITyhaioLCS5QDPKSykZJYJdo9_NkFznflRyvce9xTH1eqdichrbdnQGd72BFo_R-S88QEhjaI6w8qrdRxcf8RJ3yo9W6ek4YQH-WRz3MUGHv13andebA2bwYc62AaaUB4OH0JtRp3iDrqxqI9yedI4-n58-6tdsvXlZ1ct15mjOUpaLnEJhuWyEAiqZFQ3XXJrKcKa0sNwUTdGUVmhJSUVsaXmprCpLmFzDGJuj-2OvA4DtEFynwn57-hr7A5wKbVY
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICNSC.2014.6819590
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1479931063
9781479931064
EndPage 6
ExternalDocumentID 6819590
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i123t-2621e5f49b6ae193f6b4c49d8d43ac6f4d5b5b7f6c91080f7f47afa77e080b333
IEDL.DBID RIE
IngestDate Thu Jun 29 18:38:43 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i123t-2621e5f49b6ae193f6b4c49d8d43ac6f4d5b5b7f6c91080f7f47afa77e080b333
PageCount 6
ParticipantIDs ieee_primary_6819590
PublicationCentury 2000
PublicationDate 20140401
PublicationDateYYYYMMDD 2014-04-01
PublicationDate_xml – month: 04
  year: 2014
  text: 20140401
  day: 01
PublicationDecade 2010
PublicationTitle Proceedings of the 11th IEEE International Conference on Networking, Sensing and Control
PublicationTitleAbbrev ICNSC
PublicationYear 2014
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.6051526
Snippet In this paper, a stochastic fluid model is used to study a manufacturing/ remanufacturing system composed by two parallel machines, a serviceable inventory, a...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Manufacturing/remanufacturing system
perturbation analysis
stochastic demand
stochastic fluid model
stochastic returned products
Title Optimization of stochastic fluid model using perturbation analysis: A manufacturingremanufacturing system with stochastic demand and stochastic returned products
URI https://ieeexplore.ieee.org/document/6819590
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9zJ08qm_hNDh5t55o0ab3JcExhU9DBbiOfOtRu1Pbif-N_al7TzU08eCg04dGGpOV9_X7vIXTetRHhThEHCVMmoJLSQOgYcvAJE4RJqqseS8MRG4zp3SSeNNDFigtjjKnAZyaE2yqXr-eqhFBZh0HSJ3UO-pZz3DxXa8mDuUw7t73RYw_AWjSsBTc6plQKo7-DhstXeZzIa1gWMlSfv6ow_nctu6j9Q83DDyuls4caJmuhr3v347_XjEo8t9hZdOpFQAlmbN_KmcZVwxsMIPdnvDC50zPSC4u6KMkVvsbvIiuB6FAxF3OzMcS-5DOGuO364zWIaQzX2mxuCoiVarzwBWU_2mjcv3nqDYK690Iwc7qsCCIWdU1saSqZMM7Is-7YFE11oikRilmqYxlLbplKAaVouaVcWMG5cSNJCNlHzWyemQOENY9YmijnySWCii6RlivCtLA2sc7gkIeoBds7XfjyGtN6Z4_-nj5G23DEHjxzgppFXppTZxcU8qz6IL4BAzPAqg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4IHvSkBoy_7cGjG7J27ebNEAkooImQcCP9qUQZZG4X_xv_U9t1IBgPHpasTbM17Zbv9b3vew-Ay6YOEDVA7EVEKA9zjD0mQxuDjwhDhGNZ1FjqD0hnhO_H4bgCrlZaGKVUQT5Tvr0tYvlyLnLrKmsQG_SJzQF9y-A-jp1aa6mEuY4b3dbguWXpWtgvh27UTCkgo70L-suXOabIm59n3Befv_Iw_nc2e6D-I86DTyvY2QcVldTA16P59WelphLONTQ2nXhlNgkz1O_5VMKi5A20NPcXuFCpQRruBrMyLckNvIUzluRW6lBoF1O10YQu6TO0ntv1x0s7TEJ7rfWmKrPeUgkXLqXsRx2M2nfDVscrqy94U4NmmReQoKlCjWNOmDJmnjYbJ3AsI4kRE0RjGfKQU01EbHmKmmpMmWaUKtPiCKEDUE3miToEUNKAxJEwZ7mIYdZEXFOBiGRaR9qYHPwI1OzyThYuwcakXNnjv7svwHZn2O9Net3BwwnYsdvtqDSnoJqluTozVkLGz4uP4xs_bcP6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+11th+IEEE+International+Conference+on+Networking%2C+Sensing+and+Control&rft.atitle=Optimization+of+stochastic+fluid+model+using+perturbation+analysis%3A+A+manufacturingremanufacturing+system+with+stochastic+demand+and+stochastic+returned+products&rft.au=Sadok%2C+Turki&rft.au=Olivier%2C+Bistorin&rft.au=Nidhal%2C+Rezg&rft.date=2014-04-01&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FICNSC.2014.6819590&rft.externalDocID=6819590