Optimization of stochastic fluid model using perturbation analysis: A manufacturingremanufacturing system with stochastic demand and stochastic returned products
In this paper, a stochastic fluid model is used to study a manufacturing/ remanufacturing system composed by two parallel machines, a serviceable inventory, a remanufacturing inventory and customers who demand a stochastic quantity of product. Stochastic fluid model is adopted to describe the system...
Saved in:
Published in | Proceedings of the 11th IEEE International Conference on Networking, Sensing and Control pp. 1 - 6 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.04.2014
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/ICNSC.2014.6819590 |
Cover
Loading…
Abstract | In this paper, a stochastic fluid model is used to study a manufacturing/ remanufacturing system composed by two parallel machines, a serviceable inventory, a remanufacturing inventory and customers who demand a stochastic quantity of product. Stochastic fluid model is adopted to describe the system and to take into account machine failure, stochastic demand, stochastic returned products and remanufacturing products. The goal of this paper is to evaluate the optimal serviceable inventory level which allows minimizing the sum of inventory and lost sales costs. Perturbation analysis is applied to the stochastic fluid model to optimize the considered system. The trajectories of the serviceable inventory level are studied and the perturbation analysis estimates are evaluated. The unbiasedness of these estimates is proved and then they are implemented in an optimization algorithm which determines the optimal serviceable inventory in the presence of stochastic returned products and stochastic demand. |
---|---|
AbstractList | In this paper, a stochastic fluid model is used to study a manufacturing/ remanufacturing system composed by two parallel machines, a serviceable inventory, a remanufacturing inventory and customers who demand a stochastic quantity of product. Stochastic fluid model is adopted to describe the system and to take into account machine failure, stochastic demand, stochastic returned products and remanufacturing products. The goal of this paper is to evaluate the optimal serviceable inventory level which allows minimizing the sum of inventory and lost sales costs. Perturbation analysis is applied to the stochastic fluid model to optimize the considered system. The trajectories of the serviceable inventory level are studied and the perturbation analysis estimates are evaluated. The unbiasedness of these estimates is proved and then they are implemented in an optimization algorithm which determines the optimal serviceable inventory in the presence of stochastic returned products and stochastic demand. |
Author | Nidhal, Rezg Sadok, Turki Olivier, Bistorin |
Author_xml | – sequence: 1 givenname: Turki surname: Sadok fullname: Sadok, Turki organization: LGIPM, Univ. de Lorraine, Metz, France – sequence: 2 givenname: Bistorin surname: Olivier fullname: Olivier, Bistorin organization: LGIPM, Univ. de Lorraine, Metz, France – sequence: 3 givenname: Rezg surname: Nidhal fullname: Nidhal, Rezg organization: LGIPM, Univ. de Lorraine, Metz, France |
BookMark | eNpVkE1OwzAQhY0EC1q4AGx8gRQ7dpyYXRXxU6miC2BdOfaYWkqcyHaEym24KanaRVmMnt7M995iZujS9x4QuqNkQSmRD6v67b1e5ITyhaioLCS5QDPKSykZJYJdo9_NkFznflRyvce9xTH1eqdichrbdnQGd72BFo_R-S88QEhjaI6w8qrdRxcf8RJ3yo9W6ek4YQH-WRz3MUGHv13andebA2bwYc62AaaUB4OH0JtRp3iDrqxqI9yedI4-n58-6tdsvXlZ1ct15mjOUpaLnEJhuWyEAiqZFQ3XXJrKcKa0sNwUTdGUVmhJSUVsaXmprCpLmFzDGJuj-2OvA4DtEFynwn57-hr7A5wKbVY |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICNSC.2014.6819590 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 1479931063 9781479931064 |
EndPage | 6 |
ExternalDocumentID | 6819590 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i123t-2621e5f49b6ae193f6b4c49d8d43ac6f4d5b5b7f6c91080f7f47afa77e080b333 |
IEDL.DBID | RIE |
IngestDate | Thu Jun 29 18:38:43 EDT 2023 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i123t-2621e5f49b6ae193f6b4c49d8d43ac6f4d5b5b7f6c91080f7f47afa77e080b333 |
PageCount | 6 |
ParticipantIDs | ieee_primary_6819590 |
PublicationCentury | 2000 |
PublicationDate | 20140401 |
PublicationDateYYYYMMDD | 2014-04-01 |
PublicationDate_xml | – month: 04 year: 2014 text: 20140401 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Proceedings of the 11th IEEE International Conference on Networking, Sensing and Control |
PublicationTitleAbbrev | ICNSC |
PublicationYear | 2014 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.6051526 |
Snippet | In this paper, a stochastic fluid model is used to study a manufacturing/ remanufacturing system composed by two parallel machines, a serviceable inventory, a... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Manufacturing/remanufacturing system perturbation analysis stochastic demand stochastic fluid model stochastic returned products |
Title | Optimization of stochastic fluid model using perturbation analysis: A manufacturingremanufacturing system with stochastic demand and stochastic returned products |
URI | https://ieeexplore.ieee.org/document/6819590 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9zJ08qm_hNDh5t55o0ab3JcExhU9DBbiOfOtRu1Pbif-N_al7TzU08eCg04dGGpOV9_X7vIXTetRHhThEHCVMmoJLSQOgYcvAJE4RJqqseS8MRG4zp3SSeNNDFigtjjKnAZyaE2yqXr-eqhFBZh0HSJ3UO-pZz3DxXa8mDuUw7t73RYw_AWjSsBTc6plQKo7-DhstXeZzIa1gWMlSfv6ow_nctu6j9Q83DDyuls4caJmuhr3v347_XjEo8t9hZdOpFQAlmbN_KmcZVwxsMIPdnvDC50zPSC4u6KMkVvsbvIiuB6FAxF3OzMcS-5DOGuO364zWIaQzX2mxuCoiVarzwBWU_2mjcv3nqDYK690Iwc7qsCCIWdU1saSqZMM7Is-7YFE11oikRilmqYxlLbplKAaVouaVcWMG5cSNJCNlHzWyemQOENY9YmijnySWCii6RlivCtLA2sc7gkIeoBds7XfjyGtN6Z4_-nj5G23DEHjxzgppFXppTZxcU8qz6IL4BAzPAqg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4IHvSkBoy_7cGjG7J27ebNEAkooImQcCP9qUQZZG4X_xv_U9t1IBgPHpasTbM17Zbv9b3vew-Ay6YOEDVA7EVEKA9zjD0mQxuDjwhDhGNZ1FjqD0hnhO_H4bgCrlZaGKVUQT5Tvr0tYvlyLnLrKmsQG_SJzQF9y-A-jp1aa6mEuY4b3dbguWXpWtgvh27UTCkgo70L-suXOabIm59n3Befv_Iw_nc2e6D-I86DTyvY2QcVldTA16P59WelphLONTQ2nXhlNgkz1O_5VMKi5A20NPcXuFCpQRruBrMyLckNvIUzluRW6lBoF1O10YQu6TO0ntv1x0s7TEJ7rfWmKrPeUgkXLqXsRx2M2nfDVscrqy94U4NmmReQoKlCjWNOmDJmnjYbJ3AsI4kRE0RjGfKQU01EbHmKmmpMmWaUKtPiCKEDUE3miToEUNKAxJEwZ7mIYdZEXFOBiGRaR9qYHPwI1OzyThYuwcakXNnjv7svwHZn2O9Net3BwwnYsdvtqDSnoJqluTozVkLGz4uP4xs_bcP6 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+of+the+11th+IEEE+International+Conference+on+Networking%2C+Sensing+and+Control&rft.atitle=Optimization+of+stochastic+fluid+model+using+perturbation+analysis%3A+A+manufacturingremanufacturing+system+with+stochastic+demand+and+stochastic+returned+products&rft.au=Sadok%2C+Turki&rft.au=Olivier%2C+Bistorin&rft.au=Nidhal%2C+Rezg&rft.date=2014-04-01&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FICNSC.2014.6819590&rft.externalDocID=6819590 |