Hypertension Prediction Using Stacked Ensemble Model from Imbalanced Clinical Data
Early disease prediction is vital for improving healthcare quality and preventing patients from developing critical health issues. This research introduces a Hypertension Prediction Model (HPM) that uses individual clinical data to predict the hypertension at an early stage using a stacked ensemble...
Saved in:
Published in | 2024 International Conference on Advances in Computing, Communication, Electrical, and Smart Systems (iCACCESS) pp. 1 - 5 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
08.03.2024
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/iCACCESS61735.2024.10499627 |
Cover
Abstract | Early disease prediction is vital for improving healthcare quality and preventing patients from developing critical health issues. This research introduces a Hypertension Prediction Model (HPM) that uses individual clinical data to predict the hypertension at an early stage using a stacked ensemble machine learning technique. To resolve data distribution imbalances, the proposed framework employs the Synthetic Minority Oversampling Technique Tomek Link (SMOTETomek). The popular classification models K-Nearest Neighbour (KNN) and Random Forest (RF) are used as a base level classifier and Support Vector Machine (SVM) is used as a meta level classifier in stacked ensemble model. Three datasets of both male and female subjects and their combination were used to train and evaluate the proposed model with an emphasis to enhance the generalization capability of the classifier. Various performance evaluation matrices are used to assess and analyze the performance of the classifier under different dataset cases. The obtained results show that the proposed HPM achieves the superior accuracy when compared to alternative models and past research investigations. |
---|---|
AbstractList | Early disease prediction is vital for improving healthcare quality and preventing patients from developing critical health issues. This research introduces a Hypertension Prediction Model (HPM) that uses individual clinical data to predict the hypertension at an early stage using a stacked ensemble machine learning technique. To resolve data distribution imbalances, the proposed framework employs the Synthetic Minority Oversampling Technique Tomek Link (SMOTETomek). The popular classification models K-Nearest Neighbour (KNN) and Random Forest (RF) are used as a base level classifier and Support Vector Machine (SVM) is used as a meta level classifier in stacked ensemble model. Three datasets of both male and female subjects and their combination were used to train and evaluate the proposed model with an emphasis to enhance the generalization capability of the classifier. Various performance evaluation matrices are used to assess and analyze the performance of the classifier under different dataset cases. The obtained results show that the proposed HPM achieves the superior accuracy when compared to alternative models and past research investigations. |
Author | Ullah, Shah Muhammad Azmat Hossain, A. B. M. Aowlad |
Author_xml | – sequence: 1 givenname: Shah Muhammad Azmat surname: Ullah fullname: Ullah, Shah Muhammad Azmat email: azmat@ece.kuet.ac.bd organization: Khulna University of Engineering & Technology,Dept. of Electronics and Communication Engineering,Khulna,Bangladesh,9203 – sequence: 2 givenname: A. B. M. Aowlad surname: Hossain fullname: Hossain, A. B. M. Aowlad email: aowlad0403@ece.kuet.ac.bd organization: Khulna University of Engineering & Technology,Dept. of Electronics and Communication Engineering,Khulna,Bangladesh,9203 |
BookMark | eNo1T0tLxDAYjKAHXfcfeAh4bs2rTXNcYnUXVhTrnpc8vkgwTZe2l_33VtRhYAYGhpkbdJmHDAjdU1JSStRD1But266rqeRVyQgTJSVCqZrJC7RWUjW8IgtZo67R-_Z8gnGGPMUh47cRfHTzjz1MMX_ibjbuCzxu8wS9TYBfBg8Jh3Ho8a63JpnsllinmKMzCT-a2dyiq2DSBOs_XaHDU_uht8X-9XmnN_siUqrmIlgvCXeUMBakDcsuC94yoyolas7lAsICd5UVvPHeSi5UVQMVrDZEgeArdPfbGwHgeBpjb8bz8f8q_wbY1k8i |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/iCACCESS61735.2024.10499627 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Xplore Digital Libary (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9798350350289 |
EndPage | 5 |
ExternalDocumentID | 10499627 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i119t-fbd703c1022f7bf979bedb2a9594633777702f3c5b438ddb734956e1426a09e43 |
IEDL.DBID | RIE |
IngestDate | Wed May 01 11:58:51 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i119t-fbd703c1022f7bf979bedb2a9594633777702f3c5b438ddb734956e1426a09e43 |
PageCount | 5 |
ParticipantIDs | ieee_primary_10499627 |
PublicationCentury | 2000 |
PublicationDate | 2024-March-8 |
PublicationDateYYYYMMDD | 2024-03-08 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-March-8 day: 08 |
PublicationDecade | 2020 |
PublicationTitle | 2024 International Conference on Advances in Computing, Communication, Electrical, and Smart Systems (iCACCESS) |
PublicationTitleAbbrev | ICACCESS |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.8648136 |
Snippet | Early disease prediction is vital for improving healthcare quality and preventing patients from developing critical health issues. This research introduces a... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Computational modeling Data models Hypertension hypertension prediction imbalanced data Performance evaluation Predictive models Refining SMOTETomek stacked ensemble learning Support vector machines |
Title | Hypertension Prediction Using Stacked Ensemble Model from Imbalanced Clinical Data |
URI | https://ieeexplore.ieee.org/document/10499627 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwEA5uD-KTihN_E9DX1qVJ0-ZR6sYUHCIO9jaa5ALDrRuze_Gv95J1ioJgn0pDabj0uHyX77sj5CbnpUuNkhEkCFFEqUyUWyYiw6QCK4yFIBJ7GsrBSDyO03EjVg9aGAAI5DOI_W04y7cLs_apMvRw3J_LJGuRFv5nG7HWLrlu6mbeTou7osBpY1DmKUK_RMTbN370Tgmho79PhtuPbhgjb_G61rH5-FWP8d-zOiCdb5Ueff6KP4dkB6oj8jJAYLkKtPRFhcP-HMbbngZuAMW9Jbqtpb3qHeZ6BtT3QptRLzKhD3PteY4Gh5tqoTN6X9Zlh4z6vddiEDV9E6IpY6qOnLbox8ZjOZdppzKlweqkVKkSkvMMr27iuEm14Lm1OuMeJQHDYF12FQh-TNrVooITQn3KWEvtk0NcGJeoDL3WMWk544I7fko63iCT5aY0xmRri7M_np-TPb8ugcSVX5B2vVrDJUb1Wl-F1fwEozKiAg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwEA46QX1SceJvA_raujbpjzxK3eh0GyIb7G00yQXErZPZvfjXe8k6RUGwT6UhNFw4vtzl--4IuUlZYSIlYg9CDFF4IZSX6oB7KogFaK40OJFYfxDnI_4wjsa1WN1pYQDAkc_At6_uLl_P1dKmytDD8Xweh8km2ULg59FKrrVNruvKmbcv2V2W4cIRllmEwV_I_fWcH91THHh09shg_dsVZ-TVX1bSVx-_KjL-e137pPmt06NPXwh0QDagPCTPOYaWC0dMn5c4bG9irPWpYwdQPF2i42raLt9hJqdAbTe0KbUyE9qdSct0VDhc1wud0vuiKppk1GkPs9yrOyd4L0EgKs9IjZ6sbDRnEmlEIiRoGRYiEjxmLMGnFRqmIslZqrVMmI2TIEC4LloCODsijXJewjGhNmksY2nTQ4wrE4oE_dYEsWYB48ywE9K0Bpm8rYpjTNa2OP3j-xXZyYf93qTXHTyekV27R47SlZ6TRrVYwgVifCUv3c5-AlDcpU8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+International+Conference+on+Advances+in+Computing%2C+Communication%2C+Electrical%2C+and+Smart+Systems+%28iCACCESS%29&rft.atitle=Hypertension+Prediction+Using+Stacked+Ensemble+Model+from+Imbalanced+Clinical+Data&rft.au=Ullah%2C+Shah+Muhammad+Azmat&rft.au=Hossain%2C+A.+B.+M.+Aowlad&rft.date=2024-03-08&rft.pub=IEEE&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FiCACCESS61735.2024.10499627&rft.externalDocID=10499627 |