Hypertension Prediction Using Stacked Ensemble Model from Imbalanced Clinical Data

Early disease prediction is vital for improving healthcare quality and preventing patients from developing critical health issues. This research introduces a Hypertension Prediction Model (HPM) that uses individual clinical data to predict the hypertension at an early stage using a stacked ensemble...

Full description

Saved in:
Bibliographic Details
Published in2024 International Conference on Advances in Computing, Communication, Electrical, and Smart Systems (iCACCESS) pp. 1 - 5
Main Authors Ullah, Shah Muhammad Azmat, Hossain, A. B. M. Aowlad
Format Conference Proceeding
LanguageEnglish
Published IEEE 08.03.2024
Subjects
Online AccessGet full text
DOI10.1109/iCACCESS61735.2024.10499627

Cover

Abstract Early disease prediction is vital for improving healthcare quality and preventing patients from developing critical health issues. This research introduces a Hypertension Prediction Model (HPM) that uses individual clinical data to predict the hypertension at an early stage using a stacked ensemble machine learning technique. To resolve data distribution imbalances, the proposed framework employs the Synthetic Minority Oversampling Technique Tomek Link (SMOTETomek). The popular classification models K-Nearest Neighbour (KNN) and Random Forest (RF) are used as a base level classifier and Support Vector Machine (SVM) is used as a meta level classifier in stacked ensemble model. Three datasets of both male and female subjects and their combination were used to train and evaluate the proposed model with an emphasis to enhance the generalization capability of the classifier. Various performance evaluation matrices are used to assess and analyze the performance of the classifier under different dataset cases. The obtained results show that the proposed HPM achieves the superior accuracy when compared to alternative models and past research investigations.
AbstractList Early disease prediction is vital for improving healthcare quality and preventing patients from developing critical health issues. This research introduces a Hypertension Prediction Model (HPM) that uses individual clinical data to predict the hypertension at an early stage using a stacked ensemble machine learning technique. To resolve data distribution imbalances, the proposed framework employs the Synthetic Minority Oversampling Technique Tomek Link (SMOTETomek). The popular classification models K-Nearest Neighbour (KNN) and Random Forest (RF) are used as a base level classifier and Support Vector Machine (SVM) is used as a meta level classifier in stacked ensemble model. Three datasets of both male and female subjects and their combination were used to train and evaluate the proposed model with an emphasis to enhance the generalization capability of the classifier. Various performance evaluation matrices are used to assess and analyze the performance of the classifier under different dataset cases. The obtained results show that the proposed HPM achieves the superior accuracy when compared to alternative models and past research investigations.
Author Ullah, Shah Muhammad Azmat
Hossain, A. B. M. Aowlad
Author_xml – sequence: 1
  givenname: Shah Muhammad Azmat
  surname: Ullah
  fullname: Ullah, Shah Muhammad Azmat
  email: azmat@ece.kuet.ac.bd
  organization: Khulna University of Engineering & Technology,Dept. of Electronics and Communication Engineering,Khulna,Bangladesh,9203
– sequence: 2
  givenname: A. B. M. Aowlad
  surname: Hossain
  fullname: Hossain, A. B. M. Aowlad
  email: aowlad0403@ece.kuet.ac.bd
  organization: Khulna University of Engineering & Technology,Dept. of Electronics and Communication Engineering,Khulna,Bangladesh,9203
BookMark eNo1T0tLxDAYjKAHXfcfeAh4bs2rTXNcYnUXVhTrnpc8vkgwTZe2l_33VtRhYAYGhpkbdJmHDAjdU1JSStRD1But266rqeRVyQgTJSVCqZrJC7RWUjW8IgtZo67R-_Z8gnGGPMUh47cRfHTzjz1MMX_ibjbuCzxu8wS9TYBfBg8Jh3Ho8a63JpnsllinmKMzCT-a2dyiq2DSBOs_XaHDU_uht8X-9XmnN_siUqrmIlgvCXeUMBakDcsuC94yoyolas7lAsICd5UVvPHeSi5UVQMVrDZEgeArdPfbGwHgeBpjb8bz8f8q_wbY1k8i
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/iCACCESS61735.2024.10499627
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore Digital Libary (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350350289
EndPage 5
ExternalDocumentID 10499627
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-fbd703c1022f7bf979bedb2a9594633777702f3c5b438ddb734956e1426a09e43
IEDL.DBID RIE
IngestDate Wed May 01 11:58:51 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-fbd703c1022f7bf979bedb2a9594633777702f3c5b438ddb734956e1426a09e43
PageCount 5
ParticipantIDs ieee_primary_10499627
PublicationCentury 2000
PublicationDate 2024-March-8
PublicationDateYYYYMMDD 2024-03-08
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-March-8
  day: 08
PublicationDecade 2020
PublicationTitle 2024 International Conference on Advances in Computing, Communication, Electrical, and Smart Systems (iCACCESS)
PublicationTitleAbbrev ICACCESS
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8648136
Snippet Early disease prediction is vital for improving healthcare quality and preventing patients from developing critical health issues. This research introduces a...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Computational modeling
Data models
Hypertension
hypertension prediction
imbalanced data
Performance evaluation
Predictive models
Refining
SMOTETomek
stacked ensemble learning
Support vector machines
Title Hypertension Prediction Using Stacked Ensemble Model from Imbalanced Clinical Data
URI https://ieeexplore.ieee.org/document/10499627
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwEA5uD-KTihN_E9DX1qVJ0-ZR6sYUHCIO9jaa5ALDrRuze_Gv95J1ioJgn0pDabj0uHyX77sj5CbnpUuNkhEkCFFEqUyUWyYiw6QCK4yFIBJ7GsrBSDyO03EjVg9aGAAI5DOI_W04y7cLs_apMvRw3J_LJGuRFv5nG7HWLrlu6mbeTou7osBpY1DmKUK_RMTbN370Tgmho79PhtuPbhgjb_G61rH5-FWP8d-zOiCdb5Ueff6KP4dkB6oj8jJAYLkKtPRFhcP-HMbbngZuAMW9Jbqtpb3qHeZ6BtT3QptRLzKhD3PteY4Gh5tqoTN6X9Zlh4z6vddiEDV9E6IpY6qOnLbox8ZjOZdppzKlweqkVKkSkvMMr27iuEm14Lm1OuMeJQHDYF12FQh-TNrVooITQn3KWEvtk0NcGJeoDL3WMWk544I7fko63iCT5aY0xmRri7M_np-TPb8ugcSVX5B2vVrDJUb1Wl-F1fwEozKiAg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwEA46QX1SceJvA_raujbpjzxK3eh0GyIb7G00yQXErZPZvfjXe8k6RUGwT6UhNFw4vtzl--4IuUlZYSIlYg9CDFF4IZSX6oB7KogFaK40OJFYfxDnI_4wjsa1WN1pYQDAkc_At6_uLl_P1dKmytDD8Xweh8km2ULg59FKrrVNruvKmbcv2V2W4cIRllmEwV_I_fWcH91THHh09shg_dsVZ-TVX1bSVx-_KjL-e137pPmt06NPXwh0QDagPCTPOYaWC0dMn5c4bG9irPWpYwdQPF2i42raLt9hJqdAbTe0KbUyE9qdSct0VDhc1wud0vuiKppk1GkPs9yrOyd4L0EgKs9IjZ6sbDRnEmlEIiRoGRYiEjxmLMGnFRqmIslZqrVMmI2TIEC4LloCODsijXJewjGhNmksY2nTQ4wrE4oE_dYEsWYB48ywE9K0Bpm8rYpjTNa2OP3j-xXZyYf93qTXHTyekV27R47SlZ6TRrVYwgVifCUv3c5-AlDcpU8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+International+Conference+on+Advances+in+Computing%2C+Communication%2C+Electrical%2C+and+Smart+Systems+%28iCACCESS%29&rft.atitle=Hypertension+Prediction+Using+Stacked+Ensemble+Model+from+Imbalanced+Clinical+Data&rft.au=Ullah%2C+Shah+Muhammad+Azmat&rft.au=Hossain%2C+A.+B.+M.+Aowlad&rft.date=2024-03-08&rft.pub=IEEE&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FiCACCESS61735.2024.10499627&rft.externalDocID=10499627