Frequency Shifting-based Variational Mode Decomposition Method for Speech Signal Decomposition

In order to solve the problem of mode mixing and mode aliasing arising from speech decomposition, this paper proposes a speech signal decomposition method based on Variational Mode Decomposition (VMD): Variational Mode Decomposition-Frequency Shifting, VMD-FS). The method takes advantage of the VMD&...

Full description

Saved in:
Bibliographic Details
Published in2022 International Conference on Automation, Robotics and Computer Engineering (ICARCE) pp. 1 - 5
Main Authors Liu, Wenyang, Hu, Weiping, Fu, Deli
Format Conference Proceeding
LanguageEnglish
Published IEEE 16.12.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In order to solve the problem of mode mixing and mode aliasing arising from speech decomposition, this paper proposes a speech signal decomposition method based on Variational Mode Decomposition (VMD): Variational Mode Decomposition-Frequency Shifting, VMD-FS). The method takes advantage of the VMD's good extraction of the fundamental frequency of the speech signal, sets specific carrier parameters to shift the frequency of the speech signal to lower frequency, and then applies specific parameters and iterative methods to the VMD to decompose the speech signal in order to obtain the true IMFs that make up the speech signal. Through the decomposition experiments of real speech signals, it is demonstrated that VMD-FS solves the phenomenon of mode mixing and mode aliasing issues arising from the decomposition of speech signals compared with Empirical Mode Decomposition (EMD) and the original VMD method. From the Mean Square Error (MSE) of the decomposition results of the above three methods, it can be proved that VMD-FS outperforms EMD and VMD methods
AbstractList In order to solve the problem of mode mixing and mode aliasing arising from speech decomposition, this paper proposes a speech signal decomposition method based on Variational Mode Decomposition (VMD): Variational Mode Decomposition-Frequency Shifting, VMD-FS). The method takes advantage of the VMD's good extraction of the fundamental frequency of the speech signal, sets specific carrier parameters to shift the frequency of the speech signal to lower frequency, and then applies specific parameters and iterative methods to the VMD to decompose the speech signal in order to obtain the true IMFs that make up the speech signal. Through the decomposition experiments of real speech signals, it is demonstrated that VMD-FS solves the phenomenon of mode mixing and mode aliasing issues arising from the decomposition of speech signals compared with Empirical Mode Decomposition (EMD) and the original VMD method. From the Mean Square Error (MSE) of the decomposition results of the above three methods, it can be proved that VMD-FS outperforms EMD and VMD methods
Author Liu, Wenyang
Fu, Deli
Hu, Weiping
Author_xml – sequence: 1
  givenname: Wenyang
  surname: Liu
  fullname: Liu, Wenyang
  email: eeliuwy@stu.gxnu.edu.cn
  organization: Guangxi Normal University,School of Electronic and Information Engineering,Guilin,China
– sequence: 2
  givenname: Weiping
  surname: Hu
  fullname: Hu, Weiping
  email: huwp@gxnu.edu.cn
  organization: Guangxi Normal University,School of Electronic and Information Engineering,Guilin,China
– sequence: 3
  givenname: Deli
  surname: Fu
  fullname: Fu, Deli
  email: 1957969449@qq.com
  organization: Guangxi Normal University,School of Electronic and Information Engineering,Guilin,China
BookMark eNpVj01OwzAUhI0ECyi9AQtzgITnvyReotBSpFZIBFhSOfZzY6mNQxIWvT2pgAWrGY0-jWauyHkbWyTklkHKGOi7p_L-pVwolXOZcuA8ZQAyyxQ_I3OdF2yyMleyKC7Jx7LHzy9s7ZFWTfBjaHdJbQZ09N30wYwhtmZPN9EhfUAbD10cwimkGxyb6KiPPa06RNvQKuxO7D_smlx4sx9w_qsz8rZcvJarZP38OK1cJ4ExPSaeK7BSZboWXDCnXWYYgjTSc2cMeJsbBYIVDJz3uoZpOmjlwVnhTOGYmJGbn96AiNuuDwfTH7d_t8U350dUAg
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICARCE55724.2022.10046652
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665475488
166547548X
EndPage 5
ExternalDocumentID 10046652
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 10.13039/501100001809
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-f250c4569b3231d9d6a1e04a4f2daa0fc7a5031810dff9b0488095f0dc3da8d13
IEDL.DBID RIE
IngestDate Wed Aug 27 02:14:11 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-f250c4569b3231d9d6a1e04a4f2daa0fc7a5031810dff9b0488095f0dc3da8d13
PageCount 5
ParticipantIDs ieee_primary_10046652
PublicationCentury 2000
PublicationDate 2022-Dec.-16
PublicationDateYYYYMMDD 2022-12-16
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-Dec.-16
  day: 16
PublicationDecade 2020
PublicationTitle 2022 International Conference on Automation, Robotics and Computer Engineering (ICARCE)
PublicationTitleAbbrev ICARCE
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8410033
Snippet In order to solve the problem of mode mixing and mode aliasing arising from speech decomposition, this paper proposes a speech signal decomposition method...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms frequency shifting
mode mixing
speech decomposition
variational mode decomposition
Title Frequency Shifting-based Variational Mode Decomposition Method for Speech Signal Decomposition
URI https://ieeexplore.ieee.org/document/10046652
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA-6B_FJxYnfRPA1XdMmbfMoc2MKG-Kc7MmRj4sOYRuje9C_3iTtlAmCb6UcpNxxuY_-7n4IXQtlqYTCEKqpJkyolBSFir3jMdCZVSpwRvYHWW_E7sd8XA-rh1kYAAjgM4j8Y_iXb-Z65VtlLb_dLMu4u3G3XeVWDWvtoKt6b2brrn3z2O5wnie-WZIk0Vp-gzklBI7uHhqsj6zwIu_RqlSR_vy1jfHf37SPmj8zevjhO_ocoC2YHaKX7rKCRn_g4dvUekgz8XHK4GdXE9d9P-z5z_AteDR5DdnC_UAkjV0Gi4cLAP2Gh9NXL7sh1kSjbuep3SM1gwKZUipKYl2Co12K5Ezg8jgjTCYpxEwymxgpY6tzyb1X09hYK1TwZsFtbHRqZGFoeoQas_kMjhGWiYVcCu5KkJwxw1UmdC5oCpSr1OT5CWp65UwW1ZKMyVovp3-8P0O73kYeGUKzc9Qolyu4cPG9VJfBrl8QYqeF
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwEA4yQX1SceJvI_jarmmbtnmUubHpNsRtsidHflzcELYxugf9603STpkg-FZCQkOO63e5fncfQrdMaMIhUx6RRHoxE5GXZSKwjheDTLQQTjOy20taw_hhREdlsbqrhQEARz4D3z66f_lqLlc2VVaz3c2ShJov7rYBfkqKcq0ddFN2zqy163fP9QalaWjTJWHor1dsaKc46Gjuo976pQVj5N1f5cKXn7_6Mf57Vweo-lOlh5--8ecQbcHsCL02lwU5-gP3J1NtSc2eRSqFX8ytuMz8YauAhu_B8slL0hbuOilpbGJY3F8AyAnuT9_s3I1pVTRsNgb1lldqKHhTQljuaRPiSBMkGSOYSE4xlXACQcxjHSrOAy1TTq1fk0BpzYTzZ0Z1oGSkeKZIdIwqs_kMThDmoYaUM2ouIWkcKyoSJlNGIiBURCpNT1HVHs54UbTJGK_P5eyP8Wu02xp0O-NOu_d4jvasvSxPhCQXqJIvV3Bp0D4XV87GX_ymqs4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+International+Conference+on+Automation%2C+Robotics+and+Computer+Engineering+%28ICARCE%29&rft.atitle=Frequency+Shifting-based+Variational+Mode+Decomposition+Method+for+Speech+Signal+Decomposition&rft.au=Liu%2C+Wenyang&rft.au=Hu%2C+Weiping&rft.au=Fu%2C+Deli&rft.date=2022-12-16&rft.pub=IEEE&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FICARCE55724.2022.10046652&rft.externalDocID=10046652