Frequency Shifting-based Variational Mode Decomposition Method for Speech Signal Decomposition
In order to solve the problem of mode mixing and mode aliasing arising from speech decomposition, this paper proposes a speech signal decomposition method based on Variational Mode Decomposition (VMD): Variational Mode Decomposition-Frequency Shifting, VMD-FS). The method takes advantage of the VMD&...
Saved in:
Published in | 2022 International Conference on Automation, Robotics and Computer Engineering (ICARCE) pp. 1 - 5 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
16.12.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In order to solve the problem of mode mixing and mode aliasing arising from speech decomposition, this paper proposes a speech signal decomposition method based on Variational Mode Decomposition (VMD): Variational Mode Decomposition-Frequency Shifting, VMD-FS). The method takes advantage of the VMD's good extraction of the fundamental frequency of the speech signal, sets specific carrier parameters to shift the frequency of the speech signal to lower frequency, and then applies specific parameters and iterative methods to the VMD to decompose the speech signal in order to obtain the true IMFs that make up the speech signal. Through the decomposition experiments of real speech signals, it is demonstrated that VMD-FS solves the phenomenon of mode mixing and mode aliasing issues arising from the decomposition of speech signals compared with Empirical Mode Decomposition (EMD) and the original VMD method. From the Mean Square Error (MSE) of the decomposition results of the above three methods, it can be proved that VMD-FS outperforms EMD and VMD methods |
---|---|
AbstractList | In order to solve the problem of mode mixing and mode aliasing arising from speech decomposition, this paper proposes a speech signal decomposition method based on Variational Mode Decomposition (VMD): Variational Mode Decomposition-Frequency Shifting, VMD-FS). The method takes advantage of the VMD's good extraction of the fundamental frequency of the speech signal, sets specific carrier parameters to shift the frequency of the speech signal to lower frequency, and then applies specific parameters and iterative methods to the VMD to decompose the speech signal in order to obtain the true IMFs that make up the speech signal. Through the decomposition experiments of real speech signals, it is demonstrated that VMD-FS solves the phenomenon of mode mixing and mode aliasing issues arising from the decomposition of speech signals compared with Empirical Mode Decomposition (EMD) and the original VMD method. From the Mean Square Error (MSE) of the decomposition results of the above three methods, it can be proved that VMD-FS outperforms EMD and VMD methods |
Author | Liu, Wenyang Fu, Deli Hu, Weiping |
Author_xml | – sequence: 1 givenname: Wenyang surname: Liu fullname: Liu, Wenyang email: eeliuwy@stu.gxnu.edu.cn organization: Guangxi Normal University,School of Electronic and Information Engineering,Guilin,China – sequence: 2 givenname: Weiping surname: Hu fullname: Hu, Weiping email: huwp@gxnu.edu.cn organization: Guangxi Normal University,School of Electronic and Information Engineering,Guilin,China – sequence: 3 givenname: Deli surname: Fu fullname: Fu, Deli email: 1957969449@qq.com organization: Guangxi Normal University,School of Electronic and Information Engineering,Guilin,China |
BookMark | eNpVj01OwzAUhI0ECyi9AQtzgITnvyReotBSpFZIBFhSOfZzY6mNQxIWvT2pgAWrGY0-jWauyHkbWyTklkHKGOi7p_L-pVwolXOZcuA8ZQAyyxQ_I3OdF2yyMleyKC7Jx7LHzy9s7ZFWTfBjaHdJbQZ09N30wYwhtmZPN9EhfUAbD10cwimkGxyb6KiPPa06RNvQKuxO7D_smlx4sx9w_qsz8rZcvJarZP38OK1cJ4ExPSaeK7BSZboWXDCnXWYYgjTSc2cMeJsbBYIVDJz3uoZpOmjlwVnhTOGYmJGbn96AiNuuDwfTH7d_t8U350dUAg |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICARCE55724.2022.10046652 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9781665475488 166547548X |
EndPage | 5 |
ExternalDocumentID | 10046652 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 10.13039/501100001809 |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i119t-f250c4569b3231d9d6a1e04a4f2daa0fc7a5031810dff9b0488095f0dc3da8d13 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:14:11 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i119t-f250c4569b3231d9d6a1e04a4f2daa0fc7a5031810dff9b0488095f0dc3da8d13 |
PageCount | 5 |
ParticipantIDs | ieee_primary_10046652 |
PublicationCentury | 2000 |
PublicationDate | 2022-Dec.-16 |
PublicationDateYYYYMMDD | 2022-12-16 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-Dec.-16 day: 16 |
PublicationDecade | 2020 |
PublicationTitle | 2022 International Conference on Automation, Robotics and Computer Engineering (ICARCE) |
PublicationTitleAbbrev | ICARCE |
PublicationYear | 2022 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.8410033 |
Snippet | In order to solve the problem of mode mixing and mode aliasing arising from speech decomposition, this paper proposes a speech signal decomposition method... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | frequency shifting mode mixing speech decomposition variational mode decomposition |
Title | Frequency Shifting-based Variational Mode Decomposition Method for Speech Signal Decomposition |
URI | https://ieeexplore.ieee.org/document/10046652 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA-6B_FJxYnfRPA1XdMmbfMoc2MKG-Kc7MmRj4sOYRuje9C_3iTtlAmCb6UcpNxxuY_-7n4IXQtlqYTCEKqpJkyolBSFir3jMdCZVSpwRvYHWW_E7sd8XA-rh1kYAAjgM4j8Y_iXb-Z65VtlLb_dLMu4u3G3XeVWDWvtoKt6b2brrn3z2O5wnie-WZIk0Vp-gzklBI7uHhqsj6zwIu_RqlSR_vy1jfHf37SPmj8zevjhO_ocoC2YHaKX7rKCRn_g4dvUekgz8XHK4GdXE9d9P-z5z_AteDR5DdnC_UAkjV0Gi4cLAP2Gh9NXL7sh1kSjbuep3SM1gwKZUipKYl2Co12K5Ezg8jgjTCYpxEwymxgpY6tzyb1X09hYK1TwZsFtbHRqZGFoeoQas_kMjhGWiYVcCu5KkJwxw1UmdC5oCpSr1OT5CWp65UwW1ZKMyVovp3-8P0O73kYeGUKzc9Qolyu4cPG9VJfBrl8QYqeF |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwEA4yQX1SceJvI_jarmmbtnmUubHpNsRtsidHflzcELYxugf9603STpkg-FZCQkOO63e5fncfQrdMaMIhUx6RRHoxE5GXZSKwjheDTLQQTjOy20taw_hhREdlsbqrhQEARz4D3z66f_lqLlc2VVaz3c2ShJov7rYBfkqKcq0ddFN2zqy163fP9QalaWjTJWHor1dsaKc46Gjuo976pQVj5N1f5cKXn7_6Mf57Vweo-lOlh5--8ecQbcHsCL02lwU5-gP3J1NtSc2eRSqFX8ytuMz8YauAhu_B8slL0hbuOilpbGJY3F8AyAnuT9_s3I1pVTRsNgb1lldqKHhTQljuaRPiSBMkGSOYSE4xlXACQcxjHSrOAy1TTq1fk0BpzYTzZ0Z1oGSkeKZIdIwqs_kMThDmoYaUM2ouIWkcKyoSJlNGIiBURCpNT1HVHs54UbTJGK_P5eyP8Wu02xp0O-NOu_d4jvasvSxPhCQXqJIvV3Bp0D4XV87GX_ymqs4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+International+Conference+on+Automation%2C+Robotics+and+Computer+Engineering+%28ICARCE%29&rft.atitle=Frequency+Shifting-based+Variational+Mode+Decomposition+Method+for+Speech+Signal+Decomposition&rft.au=Liu%2C+Wenyang&rft.au=Hu%2C+Weiping&rft.au=Fu%2C+Deli&rft.date=2022-12-16&rft.pub=IEEE&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FICARCE55724.2022.10046652&rft.externalDocID=10046652 |