Cross-Subject Mental Fatigue Detection based on Separable Spatio-Temporal Feature Aggregation

Cross-subject mental fatigue detection via Electroencephalography (EEG) is challenging because EEG from different individuals varies greatly. Existing works have exploited domain adaption to alleviate the individual discrepancy due to personality, gender and so on. However, the distributions of data...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998) pp. 1 - 2
Main Authors Ye, Yalan, He, Yutuo, Huang, Wanjing, Dong, Qiaosen, Wang, Chong, Wang, Guoqing
Format Conference Proceeding
LanguageEnglish
Published IEEE 04.06.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cross-subject mental fatigue detection via Electroencephalography (EEG) is challenging because EEG from different individuals varies greatly. Existing works have exploited domain adaption to alleviate the individual discrepancy due to personality, gender and so on. However, the distributions of data from new subjects and old ones are aligned by deceiving the domain discriminator. An inevitable issue of such a paradigm is that the samples near the decision boundary are easy to be misclassified. To address this issue, we propose a Separable Spatio-temporal Feature Aggregation (SSFA) that consists of a Spatio-temporal Feature Extractor (SFE) and a Separable Feature Aggregation mechanism (SFA). Specifically, SFE utilizes the spatio-temporal information in EEG and automatically tune the weights of temporal and spatial features, so as to update the model along the optimal direction and obtain more discriminative features. In addition, SFA employs two classifiers combined with sliced Wasserstein Discrepancy to aggregate each separate class together, facilitating the mapping of the new subjects to the support region of the old subjects. Leave-one-subject-out experiments conducted on a public fatigue dataset show that the proposed method performs better than state-of-the-art on many evaluation metrics especially with an accuracy of 85.91%.
AbstractList Cross-subject mental fatigue detection via Electroencephalography (EEG) is challenging because EEG from different individuals varies greatly. Existing works have exploited domain adaption to alleviate the individual discrepancy due to personality, gender and so on. However, the distributions of data from new subjects and old ones are aligned by deceiving the domain discriminator. An inevitable issue of such a paradigm is that the samples near the decision boundary are easy to be misclassified. To address this issue, we propose a Separable Spatio-temporal Feature Aggregation (SSFA) that consists of a Spatio-temporal Feature Extractor (SFE) and a Separable Feature Aggregation mechanism (SFA). Specifically, SFE utilizes the spatio-temporal information in EEG and automatically tune the weights of temporal and spatial features, so as to update the model along the optimal direction and obtain more discriminative features. In addition, SFA employs two classifiers combined with sliced Wasserstein Discrepancy to aggregate each separate class together, facilitating the mapping of the new subjects to the support region of the old subjects. Leave-one-subject-out experiments conducted on a public fatigue dataset show that the proposed method performs better than state-of-the-art on many evaluation metrics especially with an accuracy of 85.91%.
Author Wang, Guoqing
He, Yutuo
Dong, Qiaosen
Ye, Yalan
Huang, Wanjing
Wang, Chong
Author_xml – sequence: 1
  givenname: Yalan
  surname: Ye
  fullname: Ye, Yalan
  organization: University of Electronic Science and Technology of China,School of Computer Science and Engineering,Chengdu,China
– sequence: 2
  givenname: Yutuo
  surname: He
  fullname: He, Yutuo
  organization: University of Electronic Science and Technology of China,School of Computer Science and Engineering,Chengdu,China
– sequence: 3
  givenname: Wanjing
  surname: Huang
  fullname: Huang, Wanjing
  organization: University of Electronic Science and Technology of China,School of Computer Science and Engineering,Chengdu,China
– sequence: 4
  givenname: Qiaosen
  surname: Dong
  fullname: Dong, Qiaosen
  organization: Sichuan University,College of Life Sciences,Chengdu,China
– sequence: 5
  givenname: Chong
  surname: Wang
  fullname: Wang, Chong
  organization: University of Electronic Science and Technology of China,School of Computer Science and Engineering,Chengdu,China
– sequence: 6
  givenname: Guoqing
  surname: Wang
  fullname: Wang, Guoqing
  organization: University of Electronic Science and Technology of China,School of Computer Science and Engineering,Chengdu,China
BookMark eNo1kF9LwzAUxaMouE6_gQ_xA6TmT5s0j6M6FSYKneCLjNTelI6uLUn64Ldfhvp0Lvf87uVwEnQxjAMgdMdoyhjV9y_lqqreMy1ylXLKRcoo1Xmm8zOUMMULJgVX6hwtuFCaME0_r1Di_Z5SWqisWKCv0o3ek2qu9_Ad8CsMwfR4bULXzoAfIMRtNw64Nh4aHIcKJuNM3QOupkiNZAuHaXSnIzBhdoBXbeugPXnDNbq0pvdw86dL9LF-3JbPZPP2FKNvSMeYDsRSK0EVIlNSCrAxtBWNtgKkEbXgOWdcG1lrm0FDGahIc2psbpjWEbdiiW5__3YAsJtcdzDuZ_ffhTgCJ_JXlA
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/ICASSP49357.2023.10095495
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1728163277
9781728163277
EISSN 2379-190X
EndPage 2
ExternalDocumentID 10095495
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 10.13039/501100001809
– fundername: Sichuan University
  funderid: 10.13039/501100004912
– fundername: University of Electronic Science and Technology of China
  funderid: 10.13039/501100005408
GroupedDBID 23M
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i119t-f0f6e78347663ef163f3d9f3e6a3b3252129a6b9f4ed01e7f6e20af5a199ef1f3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:23:35 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-f0f6e78347663ef163f3d9f3e6a3b3252129a6b9f4ed01e7f6e20af5a199ef1f3
PageCount 2
ParticipantIDs ieee_primary_10095495
PublicationCentury 2000
PublicationDate 2023-June-4
PublicationDateYYYYMMDD 2023-06-04
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-June-4
  day: 04
PublicationDecade 2020
PublicationTitle Proceedings of the ... IEEE International Conference on Acoustics, Speech and Signal Processing (1998)
PublicationTitleAbbrev ICASSP
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0008748
Score 2.2439973
Snippet Cross-subject mental fatigue detection via Electroencephalography (EEG) is challenging because EEG from different individuals varies greatly. Existing works...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Aggregates
Brain modeling
Domain adaptation
EEG
Electroencephalography
Fatigue
Feature extraction
Measurement
Mental fatigue detection
Signal processing
Wasserstein discrepancy
Title Cross-Subject Mental Fatigue Detection based on Separable Spatio-Temporal Feature Aggregation
URI https://ieeexplore.ieee.org/document/10095495
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA66B9EXbxPvRPC1tV0ubR7HdEzBMegGe5GRtCdDlE6kffHXe5Ju8wKCb6HkkJJDck6S7_sOIdcJlykoJ7PPVB5wmxe45nIWdHQscqMLE1nHd34cysGEP0zFdElW91wYAPDgMwhd07_lF4u8dldluMIj9yolNskmntwastZ6200Tnm6Rq6WI5s19r5tlI66YSEJXIjxcGf8oo-KjSH-XDFfjN-CRl7CuTJh__JJm_PcP7pH2F2GPjtahaJ9sQHlAdr5pDR6Sp56LhwFuFO7mhTbaPbSPjpnXQG-h8piskrqwVlBsZOBkwc0r0MyjroNxo2KFRuDVQGl3jof1uXdtm0z6d-PeIFjWVgie41hVgY2sBFdkI8GUAyxmZZYVyjKQmhnWcYxepaVRlkMRxZBg706krdCxUtjdsiPSKhclHBNqpQQhtDCJkDyVqcEUS2FaKdFGMqlPSNvN1Oytkc-YrSbp9I_vZ2TbOczjsfg5aVXvNVxg5K_Mpff4J6-eriM
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA46wcuLt4l3I_ja2i6XNo9jOjbdxqAb7EVG0p4MUTqR9sVfb5Ju8wKCbyHkQMghOSfJ930HoZuI8hiEldknIvWoTjOz51LiNWTIUiUzFWjLd-4PeGdMHyZssiCrOy4MADjwGfi26f7ys3la2qcys8MD-yvF1tGGCfysUdG1VgdvHNF4E10vZDRvu61mkgypICzybZFwf2n-o5CKiyPtXTRYzqCCj7z4ZaH89OOXOOO_p7iH6l-UPTxcBaN9tAb5Adr5pjZ4iJ5aNiJ65qiwby-4Uu_BbeOaWQn4DgqHysqxDWwZNo0ErDC4egWcONy1N6p0rIwROD1Q3JyZ6_rMObeOxu37UavjLaoreM9hKApPB5qDLbMRmaQDtMnLNMmEJsAlUaRhOb1CciU0hSwIITKjG4HUTIZCmOGaHKFaPs_hGGHNOTAmmYoYpzGPlUmyhEksubHhhMsTVLcrNX2rBDSmy0U6_aP_Cm11Rv3etNcdPJ6hbes8h86i56hWvJdwYfKAQl06738C9v6xbQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Proceedings+of+the+...+IEEE+International+Conference+on+Acoustics%2C+Speech+and+Signal+Processing+%281998%29&rft.atitle=Cross-Subject+Mental+Fatigue+Detection+based+on+Separable+Spatio-Temporal+Feature+Aggregation&rft.au=Ye%2C+Yalan&rft.au=He%2C+Yutuo&rft.au=Huang%2C+Wanjing&rft.au=Dong%2C+Qiaosen&rft.date=2023-06-04&rft.pub=IEEE&rft.eissn=2379-190X&rft.spage=1&rft.epage=2&rft_id=info:doi/10.1109%2FICASSP49357.2023.10095495&rft.externalDocID=10095495