Research on Graph Neural Network Algorithms for Financial Anomaly Detection
In recent years, advanced digital technologies like big data, blockchain, and artificial intelligence have rapidly developed. While digital fintech has played an increasingly important role in society, benefiting development of the financial industries, it has also escalated anomaly risks. There is...
Saved in:
Published in | 2023 International Conference on Networks, Communications and Intelligent Computing (NCIC) pp. 18 - 23 |
---|---|
Main Authors | , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
17.11.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In recent years, advanced digital technologies like big data, blockchain, and artificial intelligence have rapidly developed. While digital fintech has played an increasingly important role in society, benefiting development of the financial industries, it has also escalated anomaly risks. There is an urgent need to apply new digital technologies to traditional finance for anomaly prevention. Although numerous anomaly detection algorithms exist, financial anomaly detection in complex contexts remains theoretical. Given this, we compared three graph neural networks (GCN, GraphSAGE, GAT) against MLP model for anomaly prediction on the DGraph dataset. and the experiments prove that the graph neural network results all outperform the fully connected network. |
---|---|
AbstractList | In recent years, advanced digital technologies like big data, blockchain, and artificial intelligence have rapidly developed. While digital fintech has played an increasingly important role in society, benefiting development of the financial industries, it has also escalated anomaly risks. There is an urgent need to apply new digital technologies to traditional finance for anomaly prevention. Although numerous anomaly detection algorithms exist, financial anomaly detection in complex contexts remains theoretical. Given this, we compared three graph neural networks (GCN, GraphSAGE, GAT) against MLP model for anomaly prediction on the DGraph dataset. and the experiments prove that the graph neural network results all outperform the fully connected network. |
Author | Zhong, QiLong Xie, Anqi Bao, Menghu Lu, Xin Duan, Chengge Wang, Minze |
Author_xml | – sequence: 1 givenname: Xin surname: Lu fullname: Lu, Xin email: Xin.Lu22@student.xjtlu.edu.cn organization: School of Advanced Technology, Xi'an Jiaotong-Liverpool University,Suzhou,China – sequence: 2 givenname: Chengge surname: Duan fullname: Duan, Chengge email: policege@126.com organization: Industrial Park Branch Suzhou, Municipal Public Security Bureau,Suzhou,China – sequence: 3 givenname: Anqi surname: Xie fullname: Xie, Anqi email: Anqi.Xie22@student.xjtlu.edu.cn organization: School of Advanced Technology, Xi'an Jiaotong-Liverpool University,Suzhou,China – sequence: 4 givenname: Menghu surname: Bao fullname: Bao, Menghu email: baomenghu@cifs.gov.cn organization: China Institute of Forensic Science,Beijing,China – sequence: 5 givenname: Minze surname: Wang fullname: Wang, Minze email: Minze.Wang22@student.xjtlu.edu.cn organization: School of Advanced Technology, Xi'an Jiaotong-Liverpool University,Suzhou,China – sequence: 6 givenname: QiLong surname: Zhong fullname: Zhong, QiLong email: 2234935346@qq.com organization: School of Control Engineering, Northeastern University at Qinhuangdao,Qinhuangdao,China |
BookMark | eNotjEFOwzAQAI0EByj9QQ_-QIodO473GAVaKqoiIThX22RNLBK7coJQf08kmMtcRnPHrkMMxNhKirWUAh4O9a420iq7zkWu1mIGrtgSSrCqEKqUoOGWvbzRSJiajsfAtwnPHT_Qd8J-1vQT0xev-s-Y_NQNI3cx8Y0PGBo_B1WIA_YX_kgTNZOP4Z7dOOxHWv57wT42T-_1c7Z_3e7qap95KWHKqLHG2QacwZNRpSDtSAG1QrdkEJXT4HRryeUn1Ea1IEUL4MgYMgViqRZs9ff1RHQ8Jz9guhylKHIwxqhfo1JMbg |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/NCIC61838.2023.00009 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9798350371949 |
EndPage | 23 |
ExternalDocumentID | 10529666 |
Genre | orig-research |
GrantInformation_xml | – fundername: Ministry of Public Security (MPS) funderid: 10.13039/501100010868 |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i119t-ec86f8c9f6ab6370e4fe39ed04de6aa3f49f4d8ef2ba463d910d99fe66e65aa73 |
IEDL.DBID | RIE |
IngestDate | Wed May 22 07:08:16 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i119t-ec86f8c9f6ab6370e4fe39ed04de6aa3f49f4d8ef2ba463d910d99fe66e65aa73 |
PageCount | 6 |
ParticipantIDs | ieee_primary_10529666 |
PublicationCentury | 2000 |
PublicationDate | 2023-Nov.-17 |
PublicationDateYYYYMMDD | 2023-11-17 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-Nov.-17 day: 17 |
PublicationDecade | 2020 |
PublicationTitle | 2023 International Conference on Networks, Communications and Intelligent Computing (NCIC) |
PublicationTitleAbbrev | NCIC |
PublicationYear | 2023 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.8538678 |
Snippet | In recent years, advanced digital technologies like big data, blockchain, and artificial intelligence have rapidly developed. While digital fintech has played... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 18 |
SubjectTerms | Computational modeling DGraph Feature extraction Finance Financial anomalies Graph neural networks MLP Prediction algorithms Predictive models Technological innovation Training |
Title | Research on Graph Neural Network Algorithms for Financial Anomaly Detection |
URI | https://ieeexplore.ieee.org/document/10529666 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTwMhECW2J09qrPE7HLxuZRd2djk21Vo1Nh5s0lvDwqCNddfU7UF_vUC7Gk1MPEG4QIDJzMB7bwg5KzLMmeEq8vJRkYBERkpyE7lkwiZJjhxDrcO7EQzH4maSTtZk9cCFQcQAPsOu74a_fFPppX8qcxbufwkBWqTlMrcVWWtNh4uZPB_1r_vgrqhHbCU8KBPKH0VTgs8YbJFRM9sKKvLcXdZFV3_8EmL893K2SeebnkfvvxzPDtnAcpfcNhg6WpX0ystQUy-8oeauCUhv2ps_VotZ_fTyRl2kSgeN1gbtldWLmr_TC6wDMKvskPHg8qE_jNaVEqJZHMs6Qp2DzbW0oArgGUNhkUs0TBgEpbgV0gqTo00KJYAbFyMYKS0CIKRKZXyPtMuqxH1CmVSaZVoXuXWhFFO5i_eAKUhT7UxVFAek43di-roSw5g2m3D4x_gR2fSn4el7cXZM2vViiSfOj9fFaTi_T9Nynw0 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1NT8IwGG4QD3pSI8Zve9DjcLRbtx48EBBBPuIBEm7YrW-VCJuBEYP_xb_ib7MdDKOJRxJPa3ZY0rft3qft8zwvQpeBB74tqbCMfZTlMMItwam09GZCEeIDhbTWYbvD6j3nvu_2c-hjpYUBgJR8BkXTTO_yZRzOzFGZXuHmlpCxJYeyCfM3vUOb3jSqejivCKnddit1a1lEwBqWSjyxIPSZ8kOumAgY9WxwFFAO0nYkMCGocrhypA-KBMJhVOr0KTlXwBgwVwiP6u9uoE0NNFyykIctBXglm193Ko0K04vCcMQITb0Q-Y8yLWmWqu2gz6x_C3LKS3GWBMXw_Zf1478NwC4qfAsQ8cMqte6hHET7qJmxBHEc4TtjtI2NtYgY6UfKZcfl0VM8GSbP4ynWWBzXMjcRXI7isRjNcRWSlHoWFVBvLb04QPkojuAQYZuL0PbCMPCVBou28DWiZbZgrhvqn5ETHKGCifzgdWH3MciCfvzH-wu0Ve-2W4NWo9M8QdtmJhixYsk7RflkMoMzjVqS4DydOxg9rnusvgAFqgAl |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+International+Conference+on+Networks%2C+Communications+and+Intelligent+Computing+%28NCIC%29&rft.atitle=Research+on+Graph+Neural+Network+Algorithms+for+Financial+Anomaly+Detection&rft.au=Lu%2C+Xin&rft.au=Duan%2C+Chengge&rft.au=Xie%2C+Anqi&rft.au=Bao%2C+Menghu&rft.date=2023-11-17&rft.pub=IEEE&rft.spage=18&rft.epage=23&rft_id=info:doi/10.1109%2FNCIC61838.2023.00009&rft.externalDocID=10529666 |