Research on Graph Neural Network Algorithms for Financial Anomaly Detection

In recent years, advanced digital technologies like big data, blockchain, and artificial intelligence have rapidly developed. While digital fintech has played an increasingly important role in society, benefiting development of the financial industries, it has also escalated anomaly risks. There is...

Full description

Saved in:
Bibliographic Details
Published in2023 International Conference on Networks, Communications and Intelligent Computing (NCIC) pp. 18 - 23
Main Authors Lu, Xin, Duan, Chengge, Xie, Anqi, Bao, Menghu, Wang, Minze, Zhong, QiLong
Format Conference Proceeding
LanguageEnglish
Published IEEE 17.11.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In recent years, advanced digital technologies like big data, blockchain, and artificial intelligence have rapidly developed. While digital fintech has played an increasingly important role in society, benefiting development of the financial industries, it has also escalated anomaly risks. There is an urgent need to apply new digital technologies to traditional finance for anomaly prevention. Although numerous anomaly detection algorithms exist, financial anomaly detection in complex contexts remains theoretical. Given this, we compared three graph neural networks (GCN, GraphSAGE, GAT) against MLP model for anomaly prediction on the DGraph dataset. and the experiments prove that the graph neural network results all outperform the fully connected network.
AbstractList In recent years, advanced digital technologies like big data, blockchain, and artificial intelligence have rapidly developed. While digital fintech has played an increasingly important role in society, benefiting development of the financial industries, it has also escalated anomaly risks. There is an urgent need to apply new digital technologies to traditional finance for anomaly prevention. Although numerous anomaly detection algorithms exist, financial anomaly detection in complex contexts remains theoretical. Given this, we compared three graph neural networks (GCN, GraphSAGE, GAT) against MLP model for anomaly prediction on the DGraph dataset. and the experiments prove that the graph neural network results all outperform the fully connected network.
Author Zhong, QiLong
Xie, Anqi
Bao, Menghu
Lu, Xin
Duan, Chengge
Wang, Minze
Author_xml – sequence: 1
  givenname: Xin
  surname: Lu
  fullname: Lu, Xin
  email: Xin.Lu22@student.xjtlu.edu.cn
  organization: School of Advanced Technology, Xi'an Jiaotong-Liverpool University,Suzhou,China
– sequence: 2
  givenname: Chengge
  surname: Duan
  fullname: Duan, Chengge
  email: policege@126.com
  organization: Industrial Park Branch Suzhou, Municipal Public Security Bureau,Suzhou,China
– sequence: 3
  givenname: Anqi
  surname: Xie
  fullname: Xie, Anqi
  email: Anqi.Xie22@student.xjtlu.edu.cn
  organization: School of Advanced Technology, Xi'an Jiaotong-Liverpool University,Suzhou,China
– sequence: 4
  givenname: Menghu
  surname: Bao
  fullname: Bao, Menghu
  email: baomenghu@cifs.gov.cn
  organization: China Institute of Forensic Science,Beijing,China
– sequence: 5
  givenname: Minze
  surname: Wang
  fullname: Wang, Minze
  email: Minze.Wang22@student.xjtlu.edu.cn
  organization: School of Advanced Technology, Xi'an Jiaotong-Liverpool University,Suzhou,China
– sequence: 6
  givenname: QiLong
  surname: Zhong
  fullname: Zhong, QiLong
  email: 2234935346@qq.com
  organization: School of Control Engineering, Northeastern University at Qinhuangdao,Qinhuangdao,China
BookMark eNotjEFOwzAQAI0EByj9QQ_-QIodO473GAVaKqoiIThX22RNLBK7coJQf08kmMtcRnPHrkMMxNhKirWUAh4O9a420iq7zkWu1mIGrtgSSrCqEKqUoOGWvbzRSJiajsfAtwnPHT_Qd8J-1vQT0xev-s-Y_NQNI3cx8Y0PGBo_B1WIA_YX_kgTNZOP4Z7dOOxHWv57wT42T-_1c7Z_3e7qap95KWHKqLHG2QacwZNRpSDtSAG1QrdkEJXT4HRryeUn1Ea1IEUL4MgYMgViqRZs9ff1RHQ8Jz9guhylKHIwxqhfo1JMbg
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/NCIC61838.2023.00009
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350371949
EndPage 23
ExternalDocumentID 10529666
Genre orig-research
GrantInformation_xml – fundername: Ministry of Public Security (MPS)
  funderid: 10.13039/501100010868
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-ec86f8c9f6ab6370e4fe39ed04de6aa3f49f4d8ef2ba463d910d99fe66e65aa73
IEDL.DBID RIE
IngestDate Wed May 22 07:08:16 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-ec86f8c9f6ab6370e4fe39ed04de6aa3f49f4d8ef2ba463d910d99fe66e65aa73
PageCount 6
ParticipantIDs ieee_primary_10529666
PublicationCentury 2000
PublicationDate 2023-Nov.-17
PublicationDateYYYYMMDD 2023-11-17
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-Nov.-17
  day: 17
PublicationDecade 2020
PublicationTitle 2023 International Conference on Networks, Communications and Intelligent Computing (NCIC)
PublicationTitleAbbrev NCIC
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8538678
Snippet In recent years, advanced digital technologies like big data, blockchain, and artificial intelligence have rapidly developed. While digital fintech has played...
SourceID ieee
SourceType Publisher
StartPage 18
SubjectTerms Computational modeling
DGraph
Feature extraction
Finance
Financial anomalies
Graph neural networks
MLP
Prediction algorithms
Predictive models
Technological innovation
Training
Title Research on Graph Neural Network Algorithms for Financial Anomaly Detection
URI https://ieeexplore.ieee.org/document/10529666
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NTwMhECW2J09qrPE7HLxuZRd2djk21Vo1Nh5s0lvDwqCNddfU7UF_vUC7Gk1MPEG4QIDJzMB7bwg5KzLMmeEq8vJRkYBERkpyE7lkwiZJjhxDrcO7EQzH4maSTtZk9cCFQcQAPsOu74a_fFPppX8qcxbufwkBWqTlMrcVWWtNh4uZPB_1r_vgrqhHbCU8KBPKH0VTgs8YbJFRM9sKKvLcXdZFV3_8EmL893K2SeebnkfvvxzPDtnAcpfcNhg6WpX0ystQUy-8oeauCUhv2ps_VotZ_fTyRl2kSgeN1gbtldWLmr_TC6wDMKvskPHg8qE_jNaVEqJZHMs6Qp2DzbW0oArgGUNhkUs0TBgEpbgV0gqTo00KJYAbFyMYKS0CIKRKZXyPtMuqxH1CmVSaZVoXuXWhFFO5i_eAKUhT7UxVFAek43di-roSw5g2m3D4x_gR2fSn4el7cXZM2vViiSfOj9fFaTi_T9Nynw0
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1NT8IwGG4QD3pSI8Zve9DjcLRbtx48EBBBPuIBEm7YrW-VCJuBEYP_xb_ib7MdDKOJRxJPa3ZY0rft3qft8zwvQpeBB74tqbCMfZTlMMItwam09GZCEeIDhbTWYbvD6j3nvu_2c-hjpYUBgJR8BkXTTO_yZRzOzFGZXuHmlpCxJYeyCfM3vUOb3jSqejivCKnddit1a1lEwBqWSjyxIPSZ8kOumAgY9WxwFFAO0nYkMCGocrhypA-KBMJhVOr0KTlXwBgwVwiP6u9uoE0NNFyykIctBXglm193Ko0K04vCcMQITb0Q-Y8yLWmWqu2gz6x_C3LKS3GWBMXw_Zf1478NwC4qfAsQ8cMqte6hHET7qJmxBHEc4TtjtI2NtYgY6UfKZcfl0VM8GSbP4ynWWBzXMjcRXI7isRjNcRWSlHoWFVBvLb04QPkojuAQYZuL0PbCMPCVBou28DWiZbZgrhvqn5ETHKGCifzgdWH3MciCfvzH-wu0Ve-2W4NWo9M8QdtmJhixYsk7RflkMoMzjVqS4DydOxg9rnusvgAFqgAl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+International+Conference+on+Networks%2C+Communications+and+Intelligent+Computing+%28NCIC%29&rft.atitle=Research+on+Graph+Neural+Network+Algorithms+for+Financial+Anomaly+Detection&rft.au=Lu%2C+Xin&rft.au=Duan%2C+Chengge&rft.au=Xie%2C+Anqi&rft.au=Bao%2C+Menghu&rft.date=2023-11-17&rft.pub=IEEE&rft.spage=18&rft.epage=23&rft_id=info:doi/10.1109%2FNCIC61838.2023.00009&rft.externalDocID=10529666