HLA: Harmonized Label Assigner for Two-stage Oriented Object Detection

The existing state-of-the-arts two-stage oriented object detectors have no significant improvement in the label assignment strategies, and the most widely-used one is the so-called Max IoU Assigner (MIA). In this paper, we first illustrate that MIA may cause matching conflicts in some cases, hinder...

Full description

Saved in:
Bibliographic Details
Published in2022 International Conference on Automation, Robotics and Computer Engineering (ICARCE) pp. 1 - 5
Main Authors Chen, Qimeng, Zheng, Tong, Liu, Liu, Yu, Longji, Chen, Zhong
Format Conference Proceeding
LanguageEnglish
Published IEEE 16.12.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The existing state-of-the-arts two-stage oriented object detectors have no significant improvement in the label assignment strategies, and the most widely-used one is the so-called Max IoU Assigner (MIA). In this paper, we first illustrate that MIA may cause matching conflicts in some cases, hinder the matching of ground-truth (GT) boxes with high-quality samples, which is extremely harmful to the training process. After that, we propose a Harmonized Label Assigner (HLA) for the oriented RPN, which can automatically harmonize the assignment priority of each GT box according to the corresponding number of candidate samples, solve the matching conflicts, and improve the detection accuracy of the two-stage oriented detectors. Finally, we implement the proposed HLA on Oriented R-CNN and conduct sufficient experiments on two public datasets (MAR20 and HRSC2016). Without tricks, our HLA significantly improves the detection accuracy of the detector to 83.97% mAP (on MAR20) and 90.42% mAP (on HRSC2016), respectively.
AbstractList The existing state-of-the-arts two-stage oriented object detectors have no significant improvement in the label assignment strategies, and the most widely-used one is the so-called Max IoU Assigner (MIA). In this paper, we first illustrate that MIA may cause matching conflicts in some cases, hinder the matching of ground-truth (GT) boxes with high-quality samples, which is extremely harmful to the training process. After that, we propose a Harmonized Label Assigner (HLA) for the oriented RPN, which can automatically harmonize the assignment priority of each GT box according to the corresponding number of candidate samples, solve the matching conflicts, and improve the detection accuracy of the two-stage oriented detectors. Finally, we implement the proposed HLA on Oriented R-CNN and conduct sufficient experiments on two public datasets (MAR20 and HRSC2016). Without tricks, our HLA significantly improves the detection accuracy of the detector to 83.97% mAP (on MAR20) and 90.42% mAP (on HRSC2016), respectively.
Author Yu, Longji
Chen, Zhong
Chen, Qimeng
Liu, Liu
Zheng, Tong
Author_xml – sequence: 1
  givenname: Qimeng
  surname: Chen
  fullname: Chen, Qimeng
  email: chenqimeng@hust.edu.cn
  organization: Huazhong University of Science and Technology,National Key Laboratory of Science and Technology on Multi-Spectral Information Processing,Wuhan,China
– sequence: 2
  givenname: Tong
  surname: Zheng
  fullname: Zheng, Tong
  email: zhengtong88@hust.edu.cn
  organization: Huazhong University of Science and Technology,National Key Laboratory of Science and Technology on Multi-Spectral Information Processing,Wuhan,China
– sequence: 3
  givenname: Liu
  surname: Liu
  fullname: Liu, Liu
  email: eboxliu@hust.edu.cn
  organization: Huazhong University of Science and Technology,National Key Laboratory of Science and Technology on Multi-Spectral Information Processing,Wuhan,China
– sequence: 4
  givenname: Longji
  surname: Yu
  fullname: Yu, Longji
  email: longji@hust.edu.cn
  organization: Huazhong University of Science and Technology,National Key Laboratory of Science and Technology on Multi-Spectral Information Processing,Wuhan,China
– sequence: 5
  givenname: Zhong
  surname: Chen
  fullname: Chen, Zhong
  email: henpacked@hust.edu.cn
  organization: Huazhong University of Science and Technology,National Key Laboratory of Science and Technology on Multi-Spectral Information Processing,Wuhan,China
BookMark eNo1j8FKxDAURSPoQsf5AxfxA1rz2peXxl0ZZ6xQKMi4HhL7ZojMpJIWRL_eirq4nM3lcu6VOI9DZCFuQeUAyt49rern1VprU2BeqKLIQSkkQjwTS2sqINJoNFbVpdg0bX0vG5dOQwxf3MvWeT7KehzDIXKS-yHJ7ceQjZM7sOxS4DjNrc6_8eskH3iaEYZ4LS727jjy8o8L8bJZb1dN1naPs02bBQA7Zeyd7oGZyLlZo--1-YlCRHDkjPFFZTwx6ZJQW_Ie0GJpDZZA4KpyIW5-dwMz795TOLn0ufu_V34DMQFJAA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICARCE55724.2022.10046644
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665475488
166547548X
EndPage 5
ExternalDocumentID 10046644
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-eba5d1ee66aa816dd57dd5704441a6a77b287b6e65364596bb149439743161a83
IEDL.DBID RIE
IngestDate Wed Aug 27 02:14:11 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-eba5d1ee66aa816dd57dd5704441a6a77b287b6e65364596bb149439743161a83
PageCount 5
ParticipantIDs ieee_primary_10046644
PublicationCentury 2000
PublicationDate 2022-Dec.-16
PublicationDateYYYYMMDD 2022-12-16
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-Dec.-16
  day: 16
PublicationDecade 2020
PublicationTitle 2022 International Conference on Automation, Robotics and Computer Engineering (ICARCE)
PublicationTitleAbbrev ICARCE
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.826536
Snippet The existing state-of-the-arts two-stage oriented object detectors have no significant improvement in the label assignment strategies, and the most widely-used...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms label assignment
oriented object detection
two-stage
Title HLA: Harmonized Label Assigner for Two-stage Oriented Object Detection
URI https://ieeexplore.ieee.org/document/10046644
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwED7cHsQnFSf-JoKv7UjWpq1vY25UmZvIBnsbSXMbQ-nG6BD213vXbYqC4EOhhELa3oX77nLfF4A7HSKhBKvIeSexF0hHS8oEypskMrPSkBMYJic_93Q6DJ5G4WhLVi-5MIhYNp-hz7flXr6bZysuldVZ3UxTAK9AhTK3DVlrH263upn1x1bztdUOw0hxsUQpf_f8j5NTysDROYTebspNv8ibvyqsn61_qTH--52OoPbN0RMvX9HnGPYwP4FO2m3ei9Qsyblma3Siayy-C7LBbJrjUhBCFYOPuUeQcIqizxrHhDhF33I1RjxgUTZm5TUYdtqDVuptT0rwZlImhYfWhE4iam1MLLVzYcQXa8FJo00UWUqMrCaz8K5joq2lxIihCBPhpYkbp1DN5zmegciCJNPWNRJULlCBNQSKIiMbcTTJEho_hxr_hPFiI4Yx3n3_xR_jl3DAtuAOEKmvoFosV3hNcbywN6X9PgHGL5xk
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEB20gnpSseK3K3hNy6bJJvFWakuqaSvSQm9lNzstRUmlpAj99c6kraIgeAiEhZCPmfDezs57C3CnfCSWYFxK3nHoeNLSL6U91xlHMjVSUxJoFid3uioeeI9Df7gWqxdaGEQsms-wwqfFWr6dpQsulVXZ3UwRgG_DDgG_L1dyrV24XTtnVtuN-kuj6fuBy-US161srvixd0oBHa0D6G5uuuoYea0sclNJl7_8GP_9VIdQ_lbpiecv_DmCLcyOoRUn9XsR6zml13SJViTa4JugKEwnGc4FcVTR_5g5RAonKHrsckycU_QM12PEA-ZFa1ZWhkGr2W_EznqvBGcqZZQ7aLRvJaJSWodSWesHfLAbnNRKB4GhqZFRFBhed4yUMTQ1YjLCUnipw9oJlLJZhqcgUi9KlbG1CF3ruZ7RRIsCLWthME4jGj-DMn-E0fvKDmO0ef_zP8ZvYC_ud5JR0u4-XcA-x4X7QaS6hFI-X-AVoXpurotYfgIi0J-t
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+International+Conference+on+Automation%2C+Robotics+and+Computer+Engineering+%28ICARCE%29&rft.atitle=HLA%3A+Harmonized+Label+Assigner+for+Two-stage+Oriented+Object+Detection&rft.au=Chen%2C+Qimeng&rft.au=Zheng%2C+Tong&rft.au=Liu%2C+Liu&rft.au=Yu%2C+Longji&rft.date=2022-12-16&rft.pub=IEEE&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FICARCE55724.2022.10046644&rft.externalDocID=10046644