A Study on Resource Allocation for Mobile Edge Computing-Assisted Industrial Iot

Since the advancement of mobile communication technology, traditional industries are gradually transforming and upgrading, which leads to problems such as insufficient computing resources and excessive energy consumption of Internet of Things (IoT) devices. To address this issue, a resource allocati...

Full description

Saved in:
Bibliographic Details
Published in2023 International Conference on Networks, Communications and Intelligent Computing (NCIC) pp. 176 - 182
Main Authors Lu, Jie, Zhang, Yuexia, Li, Junjie
Format Conference Proceeding
LanguageEnglish
Published IEEE 17.11.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Since the advancement of mobile communication technology, traditional industries are gradually transforming and upgrading, which leads to problems such as insufficient computing resources and excessive energy consumption of Internet of Things (IoT) devices. To address this issue, a resource allocation algorithm for the mobile edge computing-assisted industrial IoT (IIoT) is proposed. First, a mobile edge computing-assisted IIoT network model was constructed. Using the collaboration between IoT devices, mobile edge computing (MEC) servers, and cloud servers, the issue of minimizing all IIoT devices energy cost was proposed. Subsequently, in order to address the optimization issue, obtain its optimal solution, the alternating direction method of multipliers (ADMM) algorithm is introduced. Finally, the ADMM algorithm's convergence was verified through an experimental simulation. In contrast to baseline algorithm 1 and algorithm 2, the ADMM algorithm can significantly diminish energy cost, proving the effectiveness of the proposed scheme.
AbstractList Since the advancement of mobile communication technology, traditional industries are gradually transforming and upgrading, which leads to problems such as insufficient computing resources and excessive energy consumption of Internet of Things (IoT) devices. To address this issue, a resource allocation algorithm for the mobile edge computing-assisted industrial IoT (IIoT) is proposed. First, a mobile edge computing-assisted IIoT network model was constructed. Using the collaboration between IoT devices, mobile edge computing (MEC) servers, and cloud servers, the issue of minimizing all IIoT devices energy cost was proposed. Subsequently, in order to address the optimization issue, obtain its optimal solution, the alternating direction method of multipliers (ADMM) algorithm is introduced. Finally, the ADMM algorithm's convergence was verified through an experimental simulation. In contrast to baseline algorithm 1 and algorithm 2, the ADMM algorithm can significantly diminish energy cost, proving the effectiveness of the proposed scheme.
Author Li, Junjie
Lu, Jie
Zhang, Yuexia
Author_xml – sequence: 1
  givenname: Jie
  surname: Lu
  fullname: Lu, Jie
  email: 1957537953@qq.com
  organization: Ministry of Information Industry Beijing Information Science and Technology University,Key Laboratory of Information and Communication Systems,Beijing,China
– sequence: 2
  givenname: Yuexia
  surname: Zhang
  fullname: Zhang, Yuexia
  email: zhyx-bupt@163.com
  organization: Control Technology Ministry of Education, Beijing Information Science and Technology University,Key Laboratory of Modern Measurement,Beijing,China
– sequence: 3
  givenname: Junjie
  surname: Li
  fullname: Li, Junjie
  email: lijunjie@163.com
  organization: Ministry of Information Industry Beijing Information Science and Technology University,Key Laboratory of Information and Communication Systems,Beijing,China
BookMark eNotzEFPwyAYgGFM9KBz_2AH_kArH5QCx6aZ2mTqMvW80PKxkHRlKfSwf6-Jnt7kObwP5HaKExKyAVYCMPP03nZtDVrokjMuSsaYkDdkbZTRQjKhwFTmnuwb-pkXd6VxogdMcZkHpM04xsHm8Gs-zvQt9mFEunUnpG08X5YcplPRpBRSRke7yS0pz8GOtIv5kdx5OyZc_3dFvp-3X-1rsft46dpmVwQAkwu0VknmnbO15EMPFfLKK-517_jAlJK8YpYbCcKjdFohd7WvjObWo0MAsSKbv29AxONlDmc7X4_AJDe1EOIH89ZNOA
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/NCIC61838.2023.00035
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350371949
EndPage 182
ExternalDocumentID 10529633
Genre orig-research
GrantInformation_xml – fundername: Beijing Information Science & Technology University
  grantid: 2020YFC1511704,2020KYNH212,2021CGZH302,Z211100004421009,61971048,KM201611232011
  funderid: 10.13039/501100010818
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-eaa750fdda652cb14e24f72f8bd2c0775240a29513fe5d87e2d6f4982afede113
IEDL.DBID RIE
IngestDate Wed May 22 07:08:16 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-eaa750fdda652cb14e24f72f8bd2c0775240a29513fe5d87e2d6f4982afede113
PageCount 7
ParticipantIDs ieee_primary_10529633
PublicationCentury 2000
PublicationDate 2023-Nov.-17
PublicationDateYYYYMMDD 2023-11-17
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-Nov.-17
  day: 17
PublicationDecade 2020
PublicationTitle 2023 International Conference on Networks, Communications and Intelligent Computing (NCIC)
PublicationTitleAbbrev NCIC
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8537635
Snippet Since the advancement of mobile communication technology, traditional industries are gradually transforming and upgrading, which leads to problems such as...
SourceID ieee
SourceType Publisher
StartPage 176
SubjectTerms Additional Keywords and Phrases
Cloud computing
Computational modeling
Convex functions
Costs
data processing
Energy consumption
Industrial internet of things
mobile edge computing
mobile network
modified ADMM
resource allocation
Resource management
Servers
Title A Study on Resource Allocation for Mobile Edge Computing-Assisted Industrial Iot
URI https://ieeexplore.ieee.org/document/10529633
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEF1sT55UrPjNHrymdjebzfZYSksrtPRgobeyH7MiSiKSHvTXO5O0VgTBWwgJG2Yy-2Z3581j7C4QKMiYJZBh-qY0xpzF-E4CRkeqnfHGEMF5NteTpXpYZastWb3mwgBAXXwGXbqsz_JD6Te0VYYRTqeEadpiLVy5NWStLR1O9Pr38-F0qPEXpYotSY1LeyTi9kM0pcaM8RGb70ZrSkVeupvKdf3nr0aM__6cY9bZ0_P44ht4TtgBFKdsMeBUE_jBy4Lv9uT54JWwimzPMTnls9LhJMBH4Ql4I-eA7yfoIfJ14HsZDz4tqw5bjkePw0mylUtInoXoVwlYi_AfQ7A6k94JBVLFXEbjgvTU6Q7B20rMqNIIWTA5yKCj6htpIwQQIj1j7aIs4JxxXKc465T3MXcKVG4g70UZvdX4oPLhgnXIHOu3piPGemeJyz_uX7FDcglx-ER-zdrV-wZuEMwrd1s78Qu5IqFy
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV07T8MwELZKGWACRBFvPMCY0jjOowNDVVo19KEOrdStxPYZIVCCIBUq_4W_wm_jnDQtQmKsxBZFcSTbd_nOufvuI-RSGVBg2rXAxfCNe-hzEfq3pdA7HE8EMggMwbk_8DpjfjdxJyXyueTCAEBWfAZVc5nl8lUiZ-ZXGXq4yRI6hVZ1F-bveEJ7uwlvcTuvGGu3Rs2OtRARsB5tu55aEEUIilqpyHOZFDYHxrXPdCAUk6b_G0JaxDDOcDS4KvCBKU_zesAiDQps28H3bpBNDDRcltPDFgQ8u1a_HjTDpodOYWrEmGmVWjOycT9kWjKUau-Qr2J-eXHKU3WWiqr8-NX68d8uwC6prAiIdLiE1j1SgnifDBvUVD3OaRLTIutAG88GjY11UQy_aT8R-JmjLfUANBeswPEW2qCxZkVXQiU0TNIKGa9lKgekHCcxHBKKJzERCS6l9gUH7gfg1zTTMvLwQS7VEamY5Z--5D0_psXKH_9x_4JsdUb93rQXDronZNuYg2Es2v4pKaevMzjD0CUV55kBUXK_7g37BhL0AGI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+International+Conference+on+Networks%2C+Communications+and+Intelligent+Computing+%28NCIC%29&rft.atitle=A+Study+on+Resource+Allocation+for+Mobile+Edge+Computing-Assisted+Industrial+Iot&rft.au=Lu%2C+Jie&rft.au=Zhang%2C+Yuexia&rft.au=Li%2C+Junjie&rft.date=2023-11-17&rft.pub=IEEE&rft.spage=176&rft.epage=182&rft_id=info:doi/10.1109%2FNCIC61838.2023.00035&rft.externalDocID=10529633