A Review of Optical Text Recognition from Distorted Scene Image

The growing number of images with text taken from a natural position increases the amount of text distortion. Some challenges come because of distortion, curvature, or blur which occur when images are taken from a natural position. Scene text recognition has made significant progress and improved in...

Full description

Saved in:
Bibliographic Details
Published in2022 4th International Conference on Cybernetics and Intelligent System (ICORIS) pp. 1 - 5
Main Authors Sumady, Oliver Oswin, Antoni, Brian Joe, Nasuta, Randy, Nurhasanah, Irwansyah, Edy
Format Conference Proceeding
LanguageEnglish
Published IEEE 08.10.2022
Subjects
Online AccessGet full text
DOI10.1109/ICORIS56080.2022.10031325

Cover

Abstract The growing number of images with text taken from a natural position increases the amount of text distortion. Some challenges come because of distortion, curvature, or blur which occur when images are taken from a natural position. Scene text recognition has made significant progress and improved in accuracy. However, issues arise from the nature of several images. This paper aims to review algorithms used for scene text recognition that focus on the accuracy and consistency of scene text recognition on various common datasets and compare them. In addition, to find the weakness and inconsistencies of various scene text recognition algorithms between different datasets. A PRISMA method flow diagram applies to conduct the review. The results show Convolutional Neural Network (CNN) is the most adopted approach to creating scene text recognition programs. The highest accuracy is the CA-FCN algorithm used for the SVT dataset. However, the consistency of algorithm performance varies from one dataset to another. Most algorithms struggled with the IC15 irregular or SVT regular dataset and performed best using the IC03 dataset.
AbstractList The growing number of images with text taken from a natural position increases the amount of text distortion. Some challenges come because of distortion, curvature, or blur which occur when images are taken from a natural position. Scene text recognition has made significant progress and improved in accuracy. However, issues arise from the nature of several images. This paper aims to review algorithms used for scene text recognition that focus on the accuracy and consistency of scene text recognition on various common datasets and compare them. In addition, to find the weakness and inconsistencies of various scene text recognition algorithms between different datasets. A PRISMA method flow diagram applies to conduct the review. The results show Convolutional Neural Network (CNN) is the most adopted approach to creating scene text recognition programs. The highest accuracy is the CA-FCN algorithm used for the SVT dataset. However, the consistency of algorithm performance varies from one dataset to another. Most algorithms struggled with the IC15 irregular or SVT regular dataset and performed best using the IC03 dataset.
Author Irwansyah, Edy
Nasuta, Randy
Sumady, Oliver Oswin
Nurhasanah
Antoni, Brian Joe
Author_xml – sequence: 1
  givenname: Oliver Oswin
  surname: Sumady
  fullname: Sumady, Oliver Oswin
  email: oliver.sumady@binus.ac.id
  organization: School of Computer Science, Bina Nusantara University,Computer Science Department,Jakarta,Indonesia
– sequence: 2
  givenname: Brian Joe
  surname: Antoni
  fullname: Antoni, Brian Joe
  email: brian.antoni@binus.ac.id
  organization: School of Computer Science, Bina Nusantara University,Computer Science Department,Jakarta,Indonesia
– sequence: 3
  givenname: Randy
  surname: Nasuta
  fullname: Nasuta, Randy
  email: randy.nasuta@binus.ac.id
  organization: School of Computer Science, Bina Nusantara University,Computer Science Department,Jakarta,Indonesia
– sequence: 4
  surname: Nurhasanah
  fullname: Nurhasanah
  email: nurhasanah001@binus.ac.id
  organization: School of Computer Science, Bina Nusantara University,Statistics Department,Jakarta,Indonesia
– sequence: 5
  givenname: Edy
  surname: Irwansyah
  fullname: Irwansyah, Edy
  email: eirwansyah@binus.edu
  organization: School of Computer Science, Bina Nusantara University,Computer Science Department,Jakarta,Indonesia
BookMark eNo1j8tqwzAQRVVoF22aP-hC_QC7M5JlWasS3JchYEjSdZDlURDEVnBEH39fQ9vVhbM4nHvDLsc4EmP3CDkimIembjfNVpVQQS5AiBwBJEqhLtjS6ArLUhVKGgXX7HHFN_QR6JNHz9tTCs4e-Y6-0oxdPIwhhThyP8WBP4VzilOinm8djcSbwR7oll15ezzT8m8X7P3leVe_Zev2talX6ywgmpSRRpp7fK-NKosCjLeVdq5z5EwpOlKFl1BolB5dN4eKHiqtQFRSkFVCygW7-_UGItqfpjDY6Xv__0v-AATERr8
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICORIS56080.2022.10031325
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665453950
1665453958
EndPage 5
ExternalDocumentID 10031325
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-e71e560fd79564409fa87ccbcec962be54f304713f1cb3252d087502832ea5233
IEDL.DBID RIE
IngestDate Thu Jan 18 11:14:48 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-e71e560fd79564409fa87ccbcec962be54f304713f1cb3252d087502832ea5233
PageCount 5
ParticipantIDs ieee_primary_10031325
PublicationCentury 2000
PublicationDate 2022-Oct.-8
PublicationDateYYYYMMDD 2022-10-08
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-Oct.-8
  day: 08
PublicationDecade 2020
PublicationTitle 2022 4th International Conference on Cybernetics and Intelligent System (ICORIS)
PublicationTitleAbbrev ICORIS
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8262187
Snippet The growing number of images with text taken from a natural position increases the amount of text distortion. Some challenges come because of distortion,...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms CA-FCN
CNN
Convolutional neural networks
distorted image
Distortion
Image recognition
Integrated optics
Optical distortion
Optical imaging
PRISMA
scene text recognition
Text recognition
Title A Review of Optical Text Recognition from Distorted Scene Image
URI https://ieeexplore.ieee.org/document/10031325
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB60B_GkYsU3K3jdmM3m0Z5EqqUVbKUP6K1sdmdBxKRIevHXO7tpFAXBWwgL2ckk89r5vgG41hTEK20NN6i7PI7yiCsZap44QxhrVNZr-mmUDubx4yJZbMDqHguDiL75DAN36c_yTanXrlRGf7hnGky2YZu-sxqstQNXG97Mm2FvPBlOyYV3Qkr8oiho1v-YnOIdR38PRs0j636R12Bd5YH--MXG-O897UP7G6PHnr-8zwFsYXEIt3esLvaz0rLxytep2YzsL5s0jUJlwRykhN17fhCKN9lUk71jwzeyLG2Y9x9mvQHfjEjgL0J0K46ZQBLYmozynJhyNas6mda5pjefRjkmsXXnakJaoXPaZWQcg72fT4SKclB5BK2iLPAYmAmzbkrRnKFkOUYplVsYCtNRQmqZyhNoO-mXq5oFY9kIfvrH_TPYdUqo--XOoVW9r_GCHHiVX3rFfQJO2Zms
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZS8NAEB60gvqkYsXbFXzdmM3maJ9EqqXRHtIDfCubPUDEpEj64q93dtMoCoJvISRkZ4fMtfN9A3AlMYgX0iiqtGzTMMgCKrgvaWQNYSi1ME7Tg2Hcm4UPz9HzCqzusDBaa9d8pj176c7yVSGXtlSGf7hjGozWYQMdfxhVcK1NuFwxZ16nndE4naATb_mY-gWBV7_xY3aKcx3dHRjWH606Rl69ZZl58uMXH-O_V7ULzW-UHnn68j97sKbzfbi5JVW5nxSGjBauUk2maIHJuG4VKnJiQSXkzjGEYMRJJhItHknf0LY0Yda9n3Z6dDUkgb4w1i6pTphGgY1KMNMJMVszopVImUnc-zjIdBQae7LGuGEyw1UGynLYuwlFWmAWyg-gkRe5PgSi_KQdYzynMF0ONefCPugz1RKMSx7zI2ha6eeLigdjXgt-_Mf9C9jqTQf9eT8dPp7AtlVI1T13Co3yfanP0J2X2blT4ieQ25z5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+4th+International+Conference+on+Cybernetics+and+Intelligent+System+%28ICORIS%29&rft.atitle=A+Review+of+Optical+Text+Recognition+from+Distorted+Scene+Image&rft.au=Sumady%2C+Oliver+Oswin&rft.au=Antoni%2C+Brian+Joe&rft.au=Nasuta%2C+Randy&rft.au=Nurhasanah&rft.date=2022-10-08&rft.pub=IEEE&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FICORIS56080.2022.10031325&rft.externalDocID=10031325