Improved QEM simplification algorithm based on local area feature information constraint

To address the issue that the traditional Quadric Error Metrics (QEM) simplification algorithm cannot effectively maintain the two crucial visual features of model details and edges, this paper improved the algorithm and proposed a simplification algorithm based on the information constraint of mode...

Full description

Saved in:
Bibliographic Details
Published inChinese Automation Congress (Online) pp. 6137 - 6142
Main Authors Pan, Hongbin, Xiao, Xinghui, Huang, Ziwei, Peng, Siqi
Format Conference Proceeding
LanguageEnglish
Published IEEE 25.11.2022
Subjects
Online AccessGet full text
ISSN2688-0938
DOI10.1109/CAC57257.2022.10054862

Cover

Abstract To address the issue that the traditional Quadric Error Metrics (QEM) simplification algorithm cannot effectively maintain the two crucial visual features of model details and edges, this paper improved the algorithm and proposed a simplification algorithm based on the information constraint of model local area features. The algorithm considered the changes in the average area of the neighborhood grid, the bending degree of the region, and the quality factor of the grid before and after grid simplification, and the amount of information from these changes is combined with the quadratic error measure to form a composite simplification error value. A simpler detection scheme is also given based on the characteristics of the model boundaries and sharp feature areas. The detection results are used as one of the conditions for simplification to avoid oversimplification of the model detail feature areas and protection of the model edges. The experimental findings demonstrate that, compared to the QEM simplification algorithm, this algorithm successfully suppressed the rise in simplification error while retaining model detail characteristics, improving the quality of the simplified model mesh.
AbstractList To address the issue that the traditional Quadric Error Metrics (QEM) simplification algorithm cannot effectively maintain the two crucial visual features of model details and edges, this paper improved the algorithm and proposed a simplification algorithm based on the information constraint of model local area features. The algorithm considered the changes in the average area of the neighborhood grid, the bending degree of the region, and the quality factor of the grid before and after grid simplification, and the amount of information from these changes is combined with the quadratic error measure to form a composite simplification error value. A simpler detection scheme is also given based on the characteristics of the model boundaries and sharp feature areas. The detection results are used as one of the conditions for simplification to avoid oversimplification of the model detail feature areas and protection of the model edges. The experimental findings demonstrate that, compared to the QEM simplification algorithm, this algorithm successfully suppressed the rise in simplification error while retaining model detail characteristics, improving the quality of the simplified model mesh.
Author Xiao, Xinghui
Huang, Ziwei
Peng, Siqi
Pan, Hongbin
Author_xml – sequence: 1
  givenname: Hongbin
  surname: Pan
  fullname: Pan, Hongbin
  email: pan_hongbin@xtu.edu.cn
  organization: Xiangtan University,College of Automation and Electronic Information,Xiangtan,China
– sequence: 2
  givenname: Xinghui
  surname: Xiao
  fullname: Xiao, Xinghui
  email: xxh0419@163.com
  organization: Xiangtan University,College of Automation and Electronic Information,Xiangtan,China
– sequence: 3
  givenname: Ziwei
  surname: Huang
  fullname: Huang, Ziwei
  email: Huang_ziweii@163.com
  organization: Xiangtan University,College of Automation and Electronic Information,Xiangtan,China
– sequence: 4
  givenname: Siqi
  surname: Peng
  fullname: Peng, Siqi
  email: pengsiqi@xtu.edu.cn
  organization: Xiangtan University,College of Automation and Electronic Information,Xiangtan,China
BookMark eNo1kM1KAzEUhaMo2Na-gUheYOrNf7IsQ62FiggK7kqaudHIzKRkRsG3t1BdHTh851ucKbnoc4-E3DJYMAburl7WynBlFhw4XzAAJa3mZ2TKtFZSKyH0OZlwbW0FTtgrMh-GTwDggkklYULeNt2h5G9s6PPqkQ6pO7QppuDHlHvq2_dc0vjR0b0fjsixanPwLfUFPY3ox6-CNPUxl-60CLkfxuJTP16Ty-jbAed_OSOv96uX-qHaPq039XJbJcbcWKF2YJwFzz3yRnrNTbAa9xqclQochNhE1Vg0EHhjmTESReSIAY2KjRAzcnPyJkTcHUrqfPnZ_T8hfgESflXu
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CAC57257.2022.10054862
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1665465336
9781665465335
EISSN 2688-0938
EndPage 6142
ExternalDocumentID 10054862
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i119t-e6907980a2ae2d4a627c86eb609845090cfdf5d8e70c2d81774e3f2eece75fd33
IEDL.DBID RIE
IngestDate Wed Aug 27 02:21:19 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-e6907980a2ae2d4a627c86eb609845090cfdf5d8e70c2d81774e3f2eece75fd33
PageCount 6
ParticipantIDs ieee_primary_10054862
PublicationCentury 2000
PublicationDate 2022-Nov.-25
PublicationDateYYYYMMDD 2022-11-25
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-Nov.-25
  day: 25
PublicationDecade 2020
PublicationTitle Chinese Automation Congress (Online)
PublicationTitleAbbrev CAC
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0002314540
Score 1.8166565
Snippet To address the issue that the traditional Quadric Error Metrics (QEM) simplification algorithm cannot effectively maintain the two crucial visual features of...
SourceID ieee
SourceType Publisher
StartPage 6137
SubjectTerms Bending
Feature extraction
feature preservation
Image color analysis
Image edge detection
improved quadratic error metric
Measurement uncertainty
Mesh simplification
Q-factor
triangular mesh model
Visualization
Title Improved QEM simplification algorithm based on local area feature information constraint
URI https://ieeexplore.ieee.org/document/10054862
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA7akycVK77Jweuuu9nNY49SWorQomCht5LHRIvaSt1e_PVOstuKguBtCYQNk2zmm9n5viHkmlvGnFQ2caXHAAWsSHTpRQJGZdoKLbkJfOfRWAwn5d2UT1uyeuTCAEAsPoM0PMZ_-W5p1yFVhl84AgwVbtxdPGcNWWubUEGgEtTkWhZwnlU3vdsel3gkMQpkLN1M_tFGJXqRwT4Zb97fFI-8pOvapPbzlzTjvxd4QLrfhD16v3VFh2QHFkdk2iQMwNGH_oh-zEPtuG9TdFS_Pi1X8_r5jQY_5igORbdGNaJI6iHqfdJWVjXOsAFJhoYSdZdMBv3H3jBpGykk8zyv6gRCCFyh8ZkG5kotmLRKgBFZpUpEDJn1znOnQGaWOZUjJITCMwALkntXFMeks1gu4ITQqhROGp97kK5EqGgKYQuvtVQGQy0Qp6QbzDJ7b7QyZhuLnP0xfk72wu4Edh_jF6RTr9ZwiW6-Nldxe78A8eqpKA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA6iBz2pWPFtDl637mbz2qOUlqptUWiht5LHRIvaSt1e_PUm2W1FQfC2BAJhssn3zWS-GYSumCHECmkSS513UMDwRFHHE9AyVYYrwXTQO_cHvDuid2M2rsXqUQsDADH5DJrhM77l27lZhlCZP-GeYMhw42554KeskmutQyqeqoR6crUOOEuL69ZNiwn_U3o_kJDmavqPRioRRzq7aLBaQZU-8tJclrppPn8VZ_z3EvdQ41uyhx_WYLSPNmB2gMZVyAAsfmz38cc0ZI-7OkiH1evTfDEtn99wQDKL_VAENqw8j8QOYsVPXBdWjTNM4JKhpUTZQKNOe9jqJnUrhWSaZUWZQHCCC29-ooBYqjgRRnLQPC0k9ZwhNc46ZiWI1BArM08KIXcEwIBgzub5IdqczWdwhHBBuRXaZQ6EpZ4s6pyb3CklpPbOFvBj1AhmmbxX1TImK4uc_DF-iba7w35v0rsd3J-inbBTQetH2BnaLBdLOPegX-qLuNVf_PusdQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Chinese+Automation+Congress+%28Online%29&rft.atitle=Improved+QEM+simplification+algorithm+based+on+local+area+feature+information+constraint&rft.au=Pan%2C+Hongbin&rft.au=Xiao%2C+Xinghui&rft.au=Huang%2C+Ziwei&rft.au=Peng%2C+Siqi&rft.date=2022-11-25&rft.pub=IEEE&rft.eissn=2688-0938&rft.spage=6137&rft.epage=6142&rft_id=info:doi/10.1109%2FCAC57257.2022.10054862&rft.externalDocID=10054862