Improved QEM simplification algorithm based on local area feature information constraint
To address the issue that the traditional Quadric Error Metrics (QEM) simplification algorithm cannot effectively maintain the two crucial visual features of model details and edges, this paper improved the algorithm and proposed a simplification algorithm based on the information constraint of mode...
Saved in:
Published in | Chinese Automation Congress (Online) pp. 6137 - 6142 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
25.11.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 2688-0938 |
DOI | 10.1109/CAC57257.2022.10054862 |
Cover
Abstract | To address the issue that the traditional Quadric Error Metrics (QEM) simplification algorithm cannot effectively maintain the two crucial visual features of model details and edges, this paper improved the algorithm and proposed a simplification algorithm based on the information constraint of model local area features. The algorithm considered the changes in the average area of the neighborhood grid, the bending degree of the region, and the quality factor of the grid before and after grid simplification, and the amount of information from these changes is combined with the quadratic error measure to form a composite simplification error value. A simpler detection scheme is also given based on the characteristics of the model boundaries and sharp feature areas. The detection results are used as one of the conditions for simplification to avoid oversimplification of the model detail feature areas and protection of the model edges. The experimental findings demonstrate that, compared to the QEM simplification algorithm, this algorithm successfully suppressed the rise in simplification error while retaining model detail characteristics, improving the quality of the simplified model mesh. |
---|---|
AbstractList | To address the issue that the traditional Quadric Error Metrics (QEM) simplification algorithm cannot effectively maintain the two crucial visual features of model details and edges, this paper improved the algorithm and proposed a simplification algorithm based on the information constraint of model local area features. The algorithm considered the changes in the average area of the neighborhood grid, the bending degree of the region, and the quality factor of the grid before and after grid simplification, and the amount of information from these changes is combined with the quadratic error measure to form a composite simplification error value. A simpler detection scheme is also given based on the characteristics of the model boundaries and sharp feature areas. The detection results are used as one of the conditions for simplification to avoid oversimplification of the model detail feature areas and protection of the model edges. The experimental findings demonstrate that, compared to the QEM simplification algorithm, this algorithm successfully suppressed the rise in simplification error while retaining model detail characteristics, improving the quality of the simplified model mesh. |
Author | Xiao, Xinghui Huang, Ziwei Peng, Siqi Pan, Hongbin |
Author_xml | – sequence: 1 givenname: Hongbin surname: Pan fullname: Pan, Hongbin email: pan_hongbin@xtu.edu.cn organization: Xiangtan University,College of Automation and Electronic Information,Xiangtan,China – sequence: 2 givenname: Xinghui surname: Xiao fullname: Xiao, Xinghui email: xxh0419@163.com organization: Xiangtan University,College of Automation and Electronic Information,Xiangtan,China – sequence: 3 givenname: Ziwei surname: Huang fullname: Huang, Ziwei email: Huang_ziweii@163.com organization: Xiangtan University,College of Automation and Electronic Information,Xiangtan,China – sequence: 4 givenname: Siqi surname: Peng fullname: Peng, Siqi email: pengsiqi@xtu.edu.cn organization: Xiangtan University,College of Automation and Electronic Information,Xiangtan,China |
BookMark | eNo1kM1KAzEUhaMo2Na-gUheYOrNf7IsQ62FiggK7kqaudHIzKRkRsG3t1BdHTh851ucKbnoc4-E3DJYMAburl7WynBlFhw4XzAAJa3mZ2TKtFZSKyH0OZlwbW0FTtgrMh-GTwDggkklYULeNt2h5G9s6PPqkQ6pO7QppuDHlHvq2_dc0vjR0b0fjsixanPwLfUFPY3ox6-CNPUxl-60CLkfxuJTP16Ty-jbAed_OSOv96uX-qHaPq039XJbJcbcWKF2YJwFzz3yRnrNTbAa9xqclQochNhE1Vg0EHhjmTESReSIAY2KjRAzcnPyJkTcHUrqfPnZ_T8hfgESflXu |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/CAC57257.2022.10054862 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 1665465336 9781665465335 |
EISSN | 2688-0938 |
EndPage | 6142 |
ExternalDocumentID | 10054862 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK OCL RIE RIL |
ID | FETCH-LOGICAL-i119t-e6907980a2ae2d4a627c86eb609845090cfdf5d8e70c2d81774e3f2eece75fd33 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:21:19 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i119t-e6907980a2ae2d4a627c86eb609845090cfdf5d8e70c2d81774e3f2eece75fd33 |
PageCount | 6 |
ParticipantIDs | ieee_primary_10054862 |
PublicationCentury | 2000 |
PublicationDate | 2022-Nov.-25 |
PublicationDateYYYYMMDD | 2022-11-25 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-Nov.-25 day: 25 |
PublicationDecade | 2020 |
PublicationTitle | Chinese Automation Congress (Online) |
PublicationTitleAbbrev | CAC |
PublicationYear | 2022 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0002314540 |
Score | 1.8166565 |
Snippet | To address the issue that the traditional Quadric Error Metrics (QEM) simplification algorithm cannot effectively maintain the two crucial visual features of... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 6137 |
SubjectTerms | Bending Feature extraction feature preservation Image color analysis Image edge detection improved quadratic error metric Measurement uncertainty Mesh simplification Q-factor triangular mesh model Visualization |
Title | Improved QEM simplification algorithm based on local area feature information constraint |
URI | https://ieeexplore.ieee.org/document/10054862 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA7akycVK77Jweuuu9nNY49SWorQomCht5LHRIvaSt1e_PVOstuKguBtCYQNk2zmm9n5viHkmlvGnFQ2caXHAAWsSHTpRQJGZdoKLbkJfOfRWAwn5d2UT1uyeuTCAEAsPoM0PMZ_-W5p1yFVhl84AgwVbtxdPGcNWWubUEGgEtTkWhZwnlU3vdsel3gkMQpkLN1M_tFGJXqRwT4Zb97fFI-8pOvapPbzlzTjvxd4QLrfhD16v3VFh2QHFkdk2iQMwNGH_oh-zEPtuG9TdFS_Pi1X8_r5jQY_5igORbdGNaJI6iHqfdJWVjXOsAFJhoYSdZdMBv3H3jBpGykk8zyv6gRCCFyh8ZkG5kotmLRKgBFZpUpEDJn1znOnQGaWOZUjJITCMwALkntXFMeks1gu4ITQqhROGp97kK5EqGgKYQuvtVQGQy0Qp6QbzDJ7b7QyZhuLnP0xfk72wu4Edh_jF6RTr9ZwiW6-Nldxe78A8eqpKA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA6iBz2pWPFtDl637mbz2qOUlqptUWiht5LHRIvaSt1e_PUm2W1FQfC2BAJhssn3zWS-GYSumCHECmkSS513UMDwRFHHE9AyVYYrwXTQO_cHvDuid2M2rsXqUQsDADH5DJrhM77l27lZhlCZP-GeYMhw42554KeskmutQyqeqoR6crUOOEuL69ZNiwn_U3o_kJDmavqPRioRRzq7aLBaQZU-8tJclrppPn8VZ_z3EvdQ41uyhx_WYLSPNmB2gMZVyAAsfmz38cc0ZI-7OkiH1evTfDEtn99wQDKL_VAENqw8j8QOYsVPXBdWjTNM4JKhpUTZQKNOe9jqJnUrhWSaZUWZQHCCC29-ooBYqjgRRnLQPC0k9ZwhNc46ZiWI1BArM08KIXcEwIBgzub5IdqczWdwhHBBuRXaZQ6EpZ4s6pyb3CklpPbOFvBj1AhmmbxX1TImK4uc_DF-iba7w35v0rsd3J-inbBTQetH2BnaLBdLOPegX-qLuNVf_PusdQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Chinese+Automation+Congress+%28Online%29&rft.atitle=Improved+QEM+simplification+algorithm+based+on+local+area+feature+information+constraint&rft.au=Pan%2C+Hongbin&rft.au=Xiao%2C+Xinghui&rft.au=Huang%2C+Ziwei&rft.au=Peng%2C+Siqi&rft.date=2022-11-25&rft.pub=IEEE&rft.eissn=2688-0938&rft.spage=6137&rft.epage=6142&rft_id=info:doi/10.1109%2FCAC57257.2022.10054862&rft.externalDocID=10054862 |