Design and Implementation of Integrated Circuits Using Enhanced Grey Swarm Optimized Artificial Neural Network

This work introduces computer-aided design (CAD) software that can automatically design and optimise Integrated Circuit (IC). To determine the device sizes that maximise performance goals by using artificial neural networks (ANNs). To accelerate the performance of ANN by using enhanced grey swarm op...

Full description

Saved in:
Bibliographic Details
Published in2023 4th International Conference on Smart Electronics and Communication (ICOSEC) pp. 769 - 773
Main Author Bhalla, Anubhav
Format Conference Proceeding
LanguageEnglish
Published IEEE 20.09.2023
Subjects
Online AccessGet full text
DOI10.1109/ICOSEC58147.2023.10276173

Cover

Loading…
Abstract This work introduces computer-aided design (CAD) software that can automatically design and optimise Integrated Circuit (IC). To determine the device sizes that maximise performance goals by using artificial neural networks (ANNs). To accelerate the performance of ANN by using enhanced grey swarm optimization (EGSO). As neural networks can learn and generalise from data, they may be used to create the model even if the formulae for the individual components are not accessible. The TSMC 0.18\ \mu\mathrm{m} CMOS process parameters were used in the HSPICE design environment to generate the training data. One real-world application is provided a CMOS technology of 0.18\ \mu\mathrm{m} to demonstrate the tool's effectiveness. The simulation results show the viability of the suggested strategy for sizing integrated circuits. The novel integrated circuit optimization system may employ parallel computing to optimise faster than the standard method.
AbstractList This work introduces computer-aided design (CAD) software that can automatically design and optimise Integrated Circuit (IC). To determine the device sizes that maximise performance goals by using artificial neural networks (ANNs). To accelerate the performance of ANN by using enhanced grey swarm optimization (EGSO). As neural networks can learn and generalise from data, they may be used to create the model even if the formulae for the individual components are not accessible. The TSMC 0.18\ \mu\mathrm{m} CMOS process parameters were used in the HSPICE design environment to generate the training data. One real-world application is provided a CMOS technology of 0.18\ \mu\mathrm{m} to demonstrate the tool's effectiveness. The simulation results show the viability of the suggested strategy for sizing integrated circuits. The novel integrated circuit optimization system may employ parallel computing to optimise faster than the standard method.
Author Bhalla, Anubhav
Author_xml – sequence: 1
  givenname: Anubhav
  surname: Bhalla
  fullname: Bhalla, Anubhav
  email: anubhav.bhalla.orp@chitkara.edu.in
  organization: Centre for Interdisciplinary Research in Business and Technology, Chitkara University Institute of Engineering and Technology, Chitkara University,Punjab,India
BookMark eNo1kL1OwzAURo0EA5S-AYN5gAQ7Tmp7rEIokSoylM7VTXpTrmicyHFVlacn4mc60hk-6Xx37Nr1Dhl7lCKWUtinMq82RZ4Zmeo4EYmKpUj0Qmp1xeZWW6MyoYQwxtwy94wjHRwHt-dlNxyxQxcgUO943_LSBTx4CLjnOfnmRGHk25HcgRfuA1wz-ZXHC9-cwXe8GgJ19DXJpQ_UUkNw5G948j8I595_3rObFo4jzv84Y9uX4j1_jdbVqsyX64iktCFCBZm1KtuDsdZgg7pWLRjVaoNZs4AUmlROztTCJnWdTX21Bkg1iEViEqlm7OF3lxBxN3jqwF92_zeobwYRWYw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICOSEC58147.2023.10276173
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350300888
EndPage 773
ExternalDocumentID 10276173
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-e3a59935da8998ece7b3fa83f78e5c6a4ac417b38b092bb5102b7aa47a0628213
IEDL.DBID RIE
IngestDate Wed Jan 10 09:28:05 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-e3a59935da8998ece7b3fa83f78e5c6a4ac417b38b092bb5102b7aa47a0628213
PageCount 5
ParticipantIDs ieee_primary_10276173
PublicationCentury 2000
PublicationDate 2023-Sept.-20
PublicationDateYYYYMMDD 2023-09-20
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-Sept.-20
  day: 20
PublicationDecade 2020
PublicationTitle 2023 4th International Conference on Smart Electronics and Communication (ICOSEC)
PublicationTitleAbbrev ICOSEC
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8475728
Snippet This work introduces computer-aided design (CAD) software that can automatically design and optimise Integrated Circuit (IC). To determine the device sizes...
SourceID ieee
SourceType Publisher
StartPage 769
SubjectTerms Artificial neural networks
CMOS process
computer-aided design (CAD)
Design automation
Enhanced Grey Swarm Optimized Artificial Neural Network (EGSO-ANN)
Integrated Circuits (ICs)
Parallel processing
Performance evaluation
Simulation
Training data
Title Design and Implementation of Integrated Circuits Using Enhanced Grey Swarm Optimized Artificial Neural Network
URI https://ieeexplore.ieee.org/document/10276173
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA5uD-KTihPvRPC1tbn18ih10wluwhzsbSTNKRZZJ7VF2K83yTpFQfAp5RDakNP09CTf9x2ErkRChGZ54oWxAI_nWeIlCpgnI8h5DiFoV3nucRTeT_nDTMxasrrjwgCAA5-Bby_dWb5eZo3dKjMrnJqsO2Id1DGZ25qstY0uW93M62E6nvRTERMe-bYquL_p_6Nyigscg1002jxyjRd59Zta-dnqlxrjv8e0h3rfHD389BV99tEWlAeovHWADCxLjZ3u76KlFpV4mePhRhpC47Sosqao37GDDOB--eKQAPjOeBZPPmS1wGPzMVkUK2O8qRygyLyp2Gp5uMaBx3toOug_p_deW1HBKwhJag-YFOaHRGhp0yzIIFIslzHLoxhEFkouM06MLVZBQpUy65WqSEoeSUu1pIQdom65LOEIYaCaGiMFoiiPA6E4yRloyMy9dcD4MerZyZq_rUUz5pt5OvnDfop2rM8sFIMGZ6hbVw2cm3hfqwvn509UD62m
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA46QX1SceLdCL62LrdeHqVubrqLsA32NpLmFIusk9kh7NebZJuiIPjUcCBpyUlymuT7voPQjYiJ0CyLvSAS4PEsjb1YAfNkCBnPIADtMs91ukFzyB9HYrQiqzsuDAA48Bn4tuju8vU0ndujMjPDqdl1h2wTbZnAL8iSrrWNrlfKmbetpNevJyIiPPRtXnB_XeNH7hQXOhp7qLt-6RIx8urPS-Wni196jP_-qn1U_Wbp4eev-HOANqA4RMW9g2RgWWjslH8nK3JRgacZbq3FITRO8lk6z8t37EADuF68OCwAfjC-xf0POZvgnllOJvnCGO9mDlJkxiq2ah7u4eDjVTRs1AdJ01vlVPByQuLSAyaF-SURWtqNFqQQKpbJiGVhBCINJJcpJ8YWqVpMlTIzlqpQSh5KS7akhB2hSjEt4BhhoJoaIwWiKI9qQnGSMdCQmrZ1jfETVLWdNX5bymaM1_10-of9Cu00B532uN3qPp2hXes_C8ygtXNUKWdzuDDRv1SXzuefj_6w7w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+4th+International+Conference+on+Smart+Electronics+and+Communication+%28ICOSEC%29&rft.atitle=Design+and+Implementation+of+Integrated+Circuits+Using+Enhanced+Grey+Swarm+Optimized+Artificial+Neural+Network&rft.au=Bhalla%2C+Anubhav&rft.date=2023-09-20&rft.pub=IEEE&rft.spage=769&rft.epage=773&rft_id=info:doi/10.1109%2FICOSEC58147.2023.10276173&rft.externalDocID=10276173