Temporal Attention Convolutional Neural Networks Based on LSTM-Encoder for Time Series Forecasting
Traditional time series prediction algorithms often struggle to model and forecast high-dimensional, complex data from real-world tasks. Here we present a temporal attention convolutional neural network (TACN) based on an LSTM encoder, which leverages attention mechanisms to process long sequences....
Saved in:
Published in | 2023 International Conference on Networks, Communications and Intelligent Computing (NCIC) pp. 51 - 54 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
17.11.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Traditional time series prediction algorithms often struggle to model and forecast high-dimensional, complex data from real-world tasks. Here we present a temporal attention convolutional neural network (TACN) based on an LSTM encoder, which leverages attention mechanisms to process long sequences. For wind power generation scenarios, we combined the LSTM encoding structure with features engineered from sinusoidal and cosine laws of wind speed variation. Experimental comparisons with basic neural network benchmarks demonstrate the superior predictive performance of our TACN model for wind power forecasts. These results indicate potential for applying the approach to practical wind farm management and planning. |
---|---|
AbstractList | Traditional time series prediction algorithms often struggle to model and forecast high-dimensional, complex data from real-world tasks. Here we present a temporal attention convolutional neural network (TACN) based on an LSTM encoder, which leverages attention mechanisms to process long sequences. For wind power generation scenarios, we combined the LSTM encoding structure with features engineered from sinusoidal and cosine laws of wind speed variation. Experimental comparisons with basic neural network benchmarks demonstrate the superior predictive performance of our TACN model for wind power forecasts. These results indicate potential for applying the approach to practical wind farm management and planning. |
Author | Zhou, Yantong Xie, Anqi Chen, Ziwen |
Author_xml | – sequence: 1 givenname: Yantong surname: Zhou fullname: Zhou, Yantong email: zhouyantong97@163.com organization: Mingyang Smart Energy group Co, Ltd,Shanghai,China – sequence: 2 givenname: Ziwen surname: Chen fullname: Chen, Ziwen email: chenziwen@hrmedical.com.cn organization: Suzhou Hengrui Hongyuan Medical Technology co., ltd.,Suzhou,China – sequence: 3 givenname: Anqi surname: Xie fullname: Xie, Anqi email: Anqi.Xie22@student.xjtlu.edu.cn organization: School of Advanced Technology Xi'an Jiaotong-Liverpool University,Suzhou,China |
BookMark | eNotjEFOwzAUBY0ECyi9QRe-QMp3HMfxskQtVApl0bCuHPsHWSR25bggbk8prOZp9DR35NoHj4QsGCwZA_Wwq7d1ySpeLXPI-RIAWHFF5kqqigvgkqlC3ZKuxfEYoh7oKiX0yQVP6-A_w3D63We_w1O8IH2F-DHRRz2hpedbs29fsrU3wWKkfYi0dSPSPUaHE92EiEZPyfn3e3LT62HC-T9n5G2zbuvnrHl92tarJnOMqZRhrlFoAG1NB9KIjmEuEJQtpex4Xxay0laiEaWttDRaCRAAOfQGAavC8BlZ_HUdIh6O0Y06fh8YiFyVUvAf92FUUQ |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/NCIC61838.2023.00014 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9798350371949 |
EndPage | 54 |
ExternalDocumentID | 10529675 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i119t-e2ae5a00adcb07c5b1e25e09d677b3f6478ad7ec56d8a7ca95050020fce0e84c3 |
IEDL.DBID | RIE |
IngestDate | Wed May 22 07:08:16 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i119t-e2ae5a00adcb07c5b1e25e09d677b3f6478ad7ec56d8a7ca95050020fce0e84c3 |
PageCount | 4 |
ParticipantIDs | ieee_primary_10529675 |
PublicationCentury | 2000 |
PublicationDate | 2023-Nov.-17 |
PublicationDateYYYYMMDD | 2023-11-17 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-Nov.-17 day: 17 |
PublicationDecade | 2020 |
PublicationTitle | 2023 International Conference on Networks, Communications and Intelligent Computing (NCIC) |
PublicationTitleAbbrev | NCIC |
PublicationYear | 2023 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.8537099 |
Snippet | Traditional time series prediction algorithms often struggle to model and forecast high-dimensional, complex data from real-world tasks. Here we present a... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 51 |
SubjectTerms | Analytical models Data models LSTM-encoder Planning Predictive models TACN Time series analysis time series prediction Wind farms Wind power generation |
Title | Temporal Attention Convolutional Neural Networks Based on LSTM-Encoder for Time Series Forecasting |
URI | https://ieeexplore.ieee.org/document/10529675 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFA26J59UnPhNHnztTNomaR91bEzRIbjB3kY-bkCUTrbOB3-9uWmnIgi-NCUEUvLBPU3OOZeQS2Etc97xpECrz9zmPgk4zoVH5qxCyzAX2RZjOZrmdzMxa8XqUQsDAJF8Bj18jXf5bmHXeFQWdjjeEiqxTbbDn1sj1mrlcJyVV-P-bV-GJYqMrRSNSxlqc34kTYkxY7hLxpveGqrIS29dm579-GXE-O_P2SPdb3keffwKPPtkC6oDYiaNydQrva7rhsNIQ_v3dmmFevThiEUkfq_oTQhgjoZm90-Th2RQobp9SQOIpagLoXhuBiuKuTutXiE7ukumw8GkP0raBArJM-dlnUCqQWjGtLOGKSsMh1QAK51UymQeZabaKbBCukIrq8sAhxA_egsMitxmh6RTLSo4IjQAHal1lvkCfC5SKD1wyUwBWmQ5eHlMujhA87fGI2O-GZuTP-pPyQ5OEqr6uDojnXq5hvMQ3mtzEaf1E3ELqAM |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwGA06D3pSceJvc_DamaxN0x51TDbdimAHu400-QKidLJ1HvzrzZd2KoLgpS0h0JKkvEfy3vsIuRJaM2MNDxKM-ox0ZAPH44y7hEZLjAwzXm2RxYNJdD8V08as7r0wAODFZ9DBR3-Wb-Z6hVtl7g_HU0IpNsmWA37Ba7tWY4jjLL3OesNe7BYpara6GF3K0J3zo2yKR427XZKt31eLRV46q6ro6I9fUYz__qA90v426NHHL-jZJxtQHpAir2OmXulNVdUqRur6vzeLy7VjEoe_een3kt46CDPUdRs95eOgX6K_fUEdjaXoDKG4cwZLitU7tVqiPrpNJnf9vDcImhIKwTPnaRVAV4FQjCmjCya1KDh0BbDUxFIWoUWjqTIStIhNoqRWqSNEyCCtBgZJpMND0irnJRwR6qhOrFQY2gRsJLqQWuAxKxJQIozAxsekjQM0e6tTMmbrsTn5o_2SbA_y8Wg2GmYPp2QHJww9flyekVa1WMG5A_uquPBT_Alh7atM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+International+Conference+on+Networks%2C+Communications+and+Intelligent+Computing+%28NCIC%29&rft.atitle=Temporal+Attention+Convolutional+Neural+Networks+Based+on+LSTM-Encoder+for+Time+Series+Forecasting&rft.au=Zhou%2C+Yantong&rft.au=Chen%2C+Ziwen&rft.au=Xie%2C+Anqi&rft.date=2023-11-17&rft.pub=IEEE&rft.spage=51&rft.epage=54&rft_id=info:doi/10.1109%2FNCIC61838.2023.00014&rft.externalDocID=10529675 |