Temporal Attention Convolutional Neural Networks Based on LSTM-Encoder for Time Series Forecasting

Traditional time series prediction algorithms often struggle to model and forecast high-dimensional, complex data from real-world tasks. Here we present a temporal attention convolutional neural network (TACN) based on an LSTM encoder, which leverages attention mechanisms to process long sequences....

Full description

Saved in:
Bibliographic Details
Published in2023 International Conference on Networks, Communications and Intelligent Computing (NCIC) pp. 51 - 54
Main Authors Zhou, Yantong, Chen, Ziwen, Xie, Anqi
Format Conference Proceeding
LanguageEnglish
Published IEEE 17.11.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Traditional time series prediction algorithms often struggle to model and forecast high-dimensional, complex data from real-world tasks. Here we present a temporal attention convolutional neural network (TACN) based on an LSTM encoder, which leverages attention mechanisms to process long sequences. For wind power generation scenarios, we combined the LSTM encoding structure with features engineered from sinusoidal and cosine laws of wind speed variation. Experimental comparisons with basic neural network benchmarks demonstrate the superior predictive performance of our TACN model for wind power forecasts. These results indicate potential for applying the approach to practical wind farm management and planning.
AbstractList Traditional time series prediction algorithms often struggle to model and forecast high-dimensional, complex data from real-world tasks. Here we present a temporal attention convolutional neural network (TACN) based on an LSTM encoder, which leverages attention mechanisms to process long sequences. For wind power generation scenarios, we combined the LSTM encoding structure with features engineered from sinusoidal and cosine laws of wind speed variation. Experimental comparisons with basic neural network benchmarks demonstrate the superior predictive performance of our TACN model for wind power forecasts. These results indicate potential for applying the approach to practical wind farm management and planning.
Author Zhou, Yantong
Xie, Anqi
Chen, Ziwen
Author_xml – sequence: 1
  givenname: Yantong
  surname: Zhou
  fullname: Zhou, Yantong
  email: zhouyantong97@163.com
  organization: Mingyang Smart Energy group Co, Ltd,Shanghai,China
– sequence: 2
  givenname: Ziwen
  surname: Chen
  fullname: Chen, Ziwen
  email: chenziwen@hrmedical.com.cn
  organization: Suzhou Hengrui Hongyuan Medical Technology co., ltd.,Suzhou,China
– sequence: 3
  givenname: Anqi
  surname: Xie
  fullname: Xie, Anqi
  email: Anqi.Xie22@student.xjtlu.edu.cn
  organization: School of Advanced Technology Xi'an Jiaotong-Liverpool University,Suzhou,China
BookMark eNotjEFOwzAUBY0ECyi9QRe-QMp3HMfxskQtVApl0bCuHPsHWSR25bggbk8prOZp9DR35NoHj4QsGCwZA_Wwq7d1ySpeLXPI-RIAWHFF5kqqigvgkqlC3ZKuxfEYoh7oKiX0yQVP6-A_w3D63We_w1O8IH2F-DHRRz2hpedbs29fsrU3wWKkfYi0dSPSPUaHE92EiEZPyfn3e3LT62HC-T9n5G2zbuvnrHl92tarJnOMqZRhrlFoAG1NB9KIjmEuEJQtpex4Xxay0laiEaWttDRaCRAAOfQGAavC8BlZ_HUdIh6O0Y06fh8YiFyVUvAf92FUUQ
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/NCIC61838.2023.00014
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350371949
EndPage 54
ExternalDocumentID 10529675
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-e2ae5a00adcb07c5b1e25e09d677b3f6478ad7ec56d8a7ca95050020fce0e84c3
IEDL.DBID RIE
IngestDate Wed May 22 07:08:16 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-e2ae5a00adcb07c5b1e25e09d677b3f6478ad7ec56d8a7ca95050020fce0e84c3
PageCount 4
ParticipantIDs ieee_primary_10529675
PublicationCentury 2000
PublicationDate 2023-Nov.-17
PublicationDateYYYYMMDD 2023-11-17
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-Nov.-17
  day: 17
PublicationDecade 2020
PublicationTitle 2023 International Conference on Networks, Communications and Intelligent Computing (NCIC)
PublicationTitleAbbrev NCIC
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8537099
Snippet Traditional time series prediction algorithms often struggle to model and forecast high-dimensional, complex data from real-world tasks. Here we present a...
SourceID ieee
SourceType Publisher
StartPage 51
SubjectTerms Analytical models
Data models
LSTM-encoder
Planning
Predictive models
TACN
Time series analysis
time series prediction
Wind farms
Wind power generation
Title Temporal Attention Convolutional Neural Networks Based on LSTM-Encoder for Time Series Forecasting
URI https://ieeexplore.ieee.org/document/10529675
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFA26J59UnPhNHnztTNomaR91bEzRIbjB3kY-bkCUTrbOB3-9uWmnIgi-NCUEUvLBPU3OOZeQS2Etc97xpECrz9zmPgk4zoVH5qxCyzAX2RZjOZrmdzMxa8XqUQsDAJF8Bj18jXf5bmHXeFQWdjjeEiqxTbbDn1sj1mrlcJyVV-P-bV-GJYqMrRSNSxlqc34kTYkxY7hLxpveGqrIS29dm579-GXE-O_P2SPdb3keffwKPPtkC6oDYiaNydQrva7rhsNIQ_v3dmmFevThiEUkfq_oTQhgjoZm90-Th2RQobp9SQOIpagLoXhuBiuKuTutXiE7ukumw8GkP0raBArJM-dlnUCqQWjGtLOGKSsMh1QAK51UymQeZabaKbBCukIrq8sAhxA_egsMitxmh6RTLSo4IjQAHal1lvkCfC5SKD1wyUwBWmQ5eHlMujhA87fGI2O-GZuTP-pPyQ5OEqr6uDojnXq5hvMQ3mtzEaf1E3ELqAM
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwGA06D3pSceJvc_DamaxN0x51TDbdimAHu400-QKidLJ1HvzrzZd2KoLgpS0h0JKkvEfy3vsIuRJaM2MNDxKM-ox0ZAPH44y7hEZLjAwzXm2RxYNJdD8V08as7r0wAODFZ9DBR3-Wb-Z6hVtl7g_HU0IpNsmWA37Ba7tWY4jjLL3OesNe7BYpara6GF3K0J3zo2yKR427XZKt31eLRV46q6ro6I9fUYz__qA90v426NHHL-jZJxtQHpAir2OmXulNVdUqRur6vzeLy7VjEoe_een3kt46CDPUdRs95eOgX6K_fUEdjaXoDKG4cwZLitU7tVqiPrpNJnf9vDcImhIKwTPnaRVAV4FQjCmjCya1KDh0BbDUxFIWoUWjqTIStIhNoqRWqSNEyCCtBgZJpMND0irnJRwR6qhOrFQY2gRsJLqQWuAxKxJQIozAxsekjQM0e6tTMmbrsTn5o_2SbA_y8Wg2GmYPp2QHJww9flyekVa1WMG5A_uquPBT_Alh7atM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+International+Conference+on+Networks%2C+Communications+and+Intelligent+Computing+%28NCIC%29&rft.atitle=Temporal+Attention+Convolutional+Neural+Networks+Based+on+LSTM-Encoder+for+Time+Series+Forecasting&rft.au=Zhou%2C+Yantong&rft.au=Chen%2C+Ziwen&rft.au=Xie%2C+Anqi&rft.date=2023-11-17&rft.pub=IEEE&rft.spage=51&rft.epage=54&rft_id=info:doi/10.1109%2FNCIC61838.2023.00014&rft.externalDocID=10529675