Private Data Sharing in EMU Maintenance: A Method Study Based on Federated Learning

In the maintenance of (Electric Multiple Unit) EMU, the operation of intelligent operation and maintenance model needs the support of data sharing from multiple subjects. However, in the context of strict safety supervision in the railway industry, the data security and privacy protection requiremen...

Full description

Saved in:
Bibliographic Details
Published in2022 3rd International Conference on Computer Science and Management Technology (ICCSMT) pp. 137 - 143
Main Authors Yang, Jiaying, Huang, Lei, Wang, Ying
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.11.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In the maintenance of (Electric Multiple Unit) EMU, the operation of intelligent operation and maintenance model needs the support of data sharing from multiple subjects. However, in the context of strict safety supervision in the railway industry, the data security and privacy protection requirements of each subject have formed a huge challenge to data sharing. Therefore, this paper proposes a new method of EMU maintenance data sharing based on federated learning, which solves the problem that some data subjects cannot share data due to the private data. In this paper, a case analysis of the method is carried out to realize the multi-subject joint training of a decision tree prediction model under the premise of protecting the privacy data in the real maintenance scenarios.
AbstractList In the maintenance of (Electric Multiple Unit) EMU, the operation of intelligent operation and maintenance model needs the support of data sharing from multiple subjects. However, in the context of strict safety supervision in the railway industry, the data security and privacy protection requirements of each subject have formed a huge challenge to data sharing. Therefore, this paper proposes a new method of EMU maintenance data sharing based on federated learning, which solves the problem that some data subjects cannot share data due to the private data. In this paper, a case analysis of the method is carried out to realize the multi-subject joint training of a decision tree prediction model under the premise of protecting the privacy data in the real maintenance scenarios.
Author Wang, Ying
Yang, Jiaying
Huang, Lei
Author_xml – sequence: 1
  givenname: Jiaying
  surname: Yang
  fullname: Yang, Jiaying
  organization: Beijing Jiaotong University,School of Economics and Management
– sequence: 2
  givenname: Lei
  surname: Huang
  fullname: Huang, Lei
  organization: Beijing Jiaotong University,School of Economics and Management
– sequence: 3
  givenname: Ying
  surname: Wang
  fullname: Wang, Ying
  email: ywangl@bjtu.edu.cn
  organization: Beijing Jiaotong University,School of Economics and Management
BookMark eNotjM1KAzEURiPoQmvfQCQv0DG_k8RdHVstzKAw7brcmDs2oBlJo9C3d0BXZ_Gd71yR8zQmJOSWs4pz5u42TdN3W225cJVgQlSMMVmfkbkzzkrNpGCKqUvSv-b4AwXpIxSg_QFyTO80JrrqdrSDmAomSG94T5e0w3IYA-3LdzjRBzhioGOiawyYp0KgLUJO0_2aXAzwccT5P2dkt15tm-dF-_K0aZbtInLuyiJo5wP3QoNztfNes9oYP1hhpJXSGa8GPyhwLKjAQQo3qcpYL0EFz7mSM3Lz142IuP_K8RPyac_ZNNlay1-W-UzG
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICCSMT58129.2022.00036
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350320404
EndPage 143
ExternalDocumentID 10143865
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 10.13039/501100001809
– fundername: China Railway
  funderid: 10.13039/100015860
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-d59bd1b25a9969bb50677bf827383397b4fbf4a90d4d1a329b25478b3a4db1143
IEDL.DBID RIE
IngestDate Thu Jan 18 11:14:35 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-d59bd1b25a9969bb50677bf827383397b4fbf4a90d4d1a329b25478b3a4db1143
PageCount 7
ParticipantIDs ieee_primary_10143865
PublicationCentury 2000
PublicationDate 2022-Nov.
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-Nov.
PublicationDecade 2020
PublicationTitle 2022 3rd International Conference on Computer Science and Management Technology (ICCSMT)
PublicationTitleAbbrev ICCSMT
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8217586
Snippet In the maintenance of (Electric Multiple Unit) EMU, the operation of intelligent operation and maintenance model needs the support of data sharing from...
SourceID ieee
SourceType Publisher
StartPage 137
SubjectTerms Computational modeling
Data models
Data privacy
Data sharing
EMU maintenance
Federated learning
Information sharing
Keywords: Federated learning
Maintenance engineering
Private data
Training
Title Private Data Sharing in EMU Maintenance: A Method Study Based on Federated Learning
URI https://ieeexplore.ieee.org/document/10143865
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3PS8MwFMeD28mTihN_8w5eu61NsjXedDqm0DHYBruNvCSVIXQyuoP-9ealnYogeCttaEtSeHmv7_v5MnZjrNFo_MdrOHYjkUsZKWtk1KMKhjG5Qk0F_WzcG83F80IuarF60MI450LzmWvTYfiXb9dmS6WyDvnKkkdlgzV85laJtWrVb9xVnafBYJrNpA9ZpEBJAomT0Ms_bFNC1BgesPHueVWzyGt7W2LbfPxCMf77hQ5Z61ugB5Ov0HPE9lxxzKaTDVmVOXjQpQYiMftrsCrgMZtDpgkMQXQNdwt3kAXjaKAuwne495HMwrqAIZEl_B0s1NjVlxabDx9ng1FUeyZEqzhWZWSlQhtjIrVPZBSiJEIc5ikpcLjfe6DIMRdada2wseaJ8kNFP0WuhUWfG_ET1izWhTtlYJEjCmmd33EIxzmKFGVq-y7RQveEPmMtmpHlW4XFWO4m4_yP8xdsn1alEvJdsma52borH9FLvA4r-QlIx6Fc
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3NT8IwGMYbxYOe1Ijx2x68DtjawupNEQLKCAmQcCN9284QkmHIOOhfb99uqDEx8bZszba0S562e5_fQ8idNlqBdh-vZtAIeCpEII0WQRN3MLROJSjc0E-Gzd6UP8_ErDSrey-MtdYXn9kaHvp_-WalN7hVVsdcWcyo3CV7TvhFWNi1St9v2JD1frs9TibCiRZ6UCLP4kT48o_gFK8b3UMy3D6xKBdZ1jY51PTHLxjjv1_piFS_LXp09CU-x2THZidkPFpjWJmlTypXFFnM7hpdZLSTTGmiEA2BfA17Tx9o4qOjKdYRvtNHp2WGrjLaRbaEu4OhJXj1tUqm3c6k3QvK1IRgEYYyD4yQYEKIhHJLGQkgkBEHaYweHOZmH8BTSLmSDcNNqFgkXVPeioEpbsCtjtgpqWSrzJ4RaoABcGGsm3NwyxjwGERsWjZSXDW5OidV7JH5WwHGmG874-KP87dkvzdJBvNBf_hySQ5whApb3xWp5OuNvXb6nsONH9VP5uGkpQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+3rd+International+Conference+on+Computer+Science+and+Management+Technology+%28ICCSMT%29&rft.atitle=Private+Data+Sharing+in+EMU+Maintenance%3A+A+Method+Study+Based+on+Federated+Learning&rft.au=Yang%2C+Jiaying&rft.au=Huang%2C+Lei&rft.au=Wang%2C+Ying&rft.date=2022-11-01&rft.pub=IEEE&rft.spage=137&rft.epage=143&rft_id=info:doi/10.1109%2FICCSMT58129.2022.00036&rft.externalDocID=10143865