Cross-domain recommendation based on meta-networks and attention transfer

Although cross-domain recommendation systems play a crucial role in solving the data sparseness and cold start challenges in recommendation systems, current algorithms primarily rely on the user-item rating matrix for user feature modeling, leading to sparse data. Furthermore, existing cross-domain...

Full description

Saved in:
Bibliographic Details
Published in2024 4th International Conference on Neural Networks, Information and Communication (NNICE) pp. 5 - 9
Main Authors Xia, Xue, Liu, Qicheng
Format Conference Proceeding
LanguageEnglish
Published IEEE 19.01.2024
Subjects
Online AccessGet full text
DOI10.1109/NNICE61279.2024.10498172

Cover

Loading…
Abstract Although cross-domain recommendation systems play a crucial role in solving the data sparseness and cold start challenges in recommendation systems, current algorithms primarily rely on the user-item rating matrix for user feature modeling, leading to sparse data. Furthermore, existing cross-domain recommendation algorithms employ mapping transfer methods that result in negative migration issues. This negative migration significantly impacts the capability of cross-domain recommendation systems. Therefore, this paper presents a novel cross-domain recommendation algorithm based on meta-network and attention transfer. In the algorithm, we first utilize pre-trained user embedding information to generate user features within their respective domains. We introduce a reconstructed self-encoder to generate global user embeddings, enhancing the user representation for users in the source and target domain. Next, we leverage the user/item interaction information of the user in the source field to generate migratable user feature information through a meta-network. Finally, through the attention network, we use the user feature embeddings of the target field and the user's migratable information in the source field as the input of the attention network to generate feature embeddings specific to the target field for rating prediction. We conducted experiments on two domain pairs consisting of three Amazon datasets. The results indicate that the algorithm presented in this paper outperforms other benchmark models under MSE and MAE evaluation metrics.
AbstractList Although cross-domain recommendation systems play a crucial role in solving the data sparseness and cold start challenges in recommendation systems, current algorithms primarily rely on the user-item rating matrix for user feature modeling, leading to sparse data. Furthermore, existing cross-domain recommendation algorithms employ mapping transfer methods that result in negative migration issues. This negative migration significantly impacts the capability of cross-domain recommendation systems. Therefore, this paper presents a novel cross-domain recommendation algorithm based on meta-network and attention transfer. In the algorithm, we first utilize pre-trained user embedding information to generate user features within their respective domains. We introduce a reconstructed self-encoder to generate global user embeddings, enhancing the user representation for users in the source and target domain. Next, we leverage the user/item interaction information of the user in the source field to generate migratable user feature information through a meta-network. Finally, through the attention network, we use the user feature embeddings of the target field and the user's migratable information in the source field as the input of the attention network to generate feature embeddings specific to the target field for rating prediction. We conducted experiments on two domain pairs consisting of three Amazon datasets. The results indicate that the algorithm presented in this paper outperforms other benchmark models under MSE and MAE evaluation metrics.
Author Liu, Qicheng
Xia, Xue
Author_xml – sequence: 1
  givenname: Xue
  surname: Xia
  fullname: Xia, Xue
  email: xiaxue_1999@163.com
  organization: Yantai University,School of Computer and Control Engineering,Yantai,P.R. China
– sequence: 2
  givenname: Qicheng
  surname: Liu
  fullname: Liu, Qicheng
  email: ytliuqc@163.com
  organization: Yantai University,School of Computer and Control Engineering,Yantai,P.R. China
BookMark eNo1j81KxDAURiM4Cx3nDWaRF2jNT5v0LqWMWhjGja6H2-QGijaRJCC-veLP6juLw4Hvml3GFIkxLkUrpYDb02kaD0YqC60Sqmul6GCQVl2wHVgYdC80dNr2V2wacyql8WnFJfJMLq0rRY91SZHPWMjzb1ipYhOpfqT8WjhGz7FWij9SzRhLoHzDNgHfCu3-dste7g_P42NzfHqYxrtjs0gJtfFCK2mM9z2QdxbVgNppsh30GIwanLRz5wKYWWIYgIR1vbDBmUCzAQ96y_a_3YWIzu95WTF_nv8f6i9k-00E
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/NNICE61279.2024.10498172
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350394375
EndPage 9
ExternalDocumentID 10498172
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 10.13039/501100001809
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-d032166dd59edc7a28a3c3e7495af628c17b4cf96b1af89e07c507fc6feb69d93
IEDL.DBID RIE
IngestDate Wed May 01 11:58:52 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-d032166dd59edc7a28a3c3e7495af628c17b4cf96b1af89e07c507fc6feb69d93
PageCount 5
ParticipantIDs ieee_primary_10498172
PublicationCentury 2000
PublicationDate 2024-Jan.-19
PublicationDateYYYYMMDD 2024-01-19
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-Jan.-19
  day: 19
PublicationDecade 2020
PublicationTitle 2024 4th International Conference on Neural Networks, Information and Communication (NNICE)
PublicationTitleAbbrev NNICE
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8677856
Snippet Although cross-domain recommendation systems play a crucial role in solving the data sparseness and cold start challenges in recommendation systems, current...
SourceID ieee
SourceType Publisher
StartPage 5
SubjectTerms Artificial neural networks
Benchmark testing
Cross-domain recommendation
Data mining
Data models
Measurement
Meta-network
Multi-headed Attention mechanisms
Prediction algorithms
Sparse matrices
Title Cross-domain recommendation based on meta-networks and attention transfer
URI https://ieeexplore.ieee.org/document/10498172
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60J08qVnyzB68bu3nsZs-lpQoGDxZ6K_uYgEhTqenFX-_MplEUBG9LSDZhh8y3M_t9M4zd0slWVjotrNVa5CX6QZMqK0Jae-OyupCB8pCPlZrN84dFsdiJ1aMWBgAi-QwSGsaz_LD2W0qV4R-eG5wNPe4-Rm6dWKtn54zMXVXdjyeI2JoEKGme9Lf_aJwScWN6yKr-jR1d5DXZti7xH7-KMf77k47Y8Fuix5--wOeY7UFzwu7HhHkirFcY73OKdVf4eNc1iRNeBY6DFbRWNB39-53bJnCqsRlZj7yN-1jYDNl8Onkez8SuV4J4kdK0IoyyVCoVQmEgeG3T0mY-A43xj61VWnqpXe5ro5y0dWlgpD3uBGuvanDKBJOdskGzbuCMcfQ7ucl1Cq5EQ2oqwAcZzkgNIbRVxTkb0jos37pyGMt-CS7-uH7JDsgclLeQ5ooN2s0WrhHJW3cTLfgJIK-e_g
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5SD3pSseLbHLxmbfaRbM6lpdV28dBCbyWPWRDpVur24q93ku0qCoK3sJDskmHny0y-b4aQe3-zleRGMq2lZGmOflDFQjMXl1aZpMy483nIaSFG8_RxkS12YvWghQGAQD6DyA_DXb5b261PleEfnipcDT3uPgJ_xhu5VsvP6amHohj3B4jZ0ktQ4jRqJ_xonRKQY3hEivadDWHkNdrWJrIfv8ox_vujjkn3W6RHn7_g54TsQXVKxn2PesytVxjxUx_trnB60zeJesRyFAcrqDWrGgL4O9WVo77KZuA90jqcZGHTJfPhYNYfsV23BPbCuaqZ6yUxF8K5TIGzUse5TmwCEiMgXYo4t1ya1JZKGK7LXEFPWjwLllaUYIRyKjkjnWpdwTmh6HlSlcoYTI6mlL4EHyS4om8JIbXILkjX78PyrSmIsWy34PKP53fkYDSbTpaTcfF0RQ69aXwWg6tr0qk3W7hBXK_NbbDmJ5zlokc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+4th+International+Conference+on+Neural+Networks%2C+Information+and+Communication+%28NNICE%29&rft.atitle=Cross-domain+recommendation+based+on+meta-networks+and+attention+transfer&rft.au=Xia%2C+Xue&rft.au=Liu%2C+Qicheng&rft.date=2024-01-19&rft.pub=IEEE&rft.spage=5&rft.epage=9&rft_id=info:doi/10.1109%2FNNICE61279.2024.10498172&rft.externalDocID=10498172