Prediction of Students Final Project Values Based on Errors in Scientific Writing Using Data Mining Classification Algorithms

College databases are quickly amassing more and more data. Some data, which has not been used to raise the caliber of student performance, includes secret information regarding student performance. Data mining is used to examine accessible educational data and reveal any hidden information that may...

Full description

Saved in:
Bibliographic Details
Published in2022 4th International Conference on Cybernetics and Intelligent System (ICORIS) pp. 1 - 6
Main Authors Hariguna, Taqwa, Berlilana, Hananto, Andhika Rafi
Format Conference Proceeding
LanguageEnglish
Published IEEE 08.10.2022
Subjects
Online AccessGet full text
DOI10.1109/ICORIS56080.2022.10031565

Cover

Abstract College databases are quickly amassing more and more data. Some data, which has not been used to raise the caliber of student performance, includes secret information regarding student performance. Data mining is used to examine accessible educational data and reveal any hidden information that may be there. This study uses a data mining classification model to develop rules that can forecast the final project value of program students' information management based on course values that aid in the final project's preparation. The study's analysis of student performance in courses that help them prepare for their final projects will also be included. According to the subject that underpins their final project, this prediction is supposed to assist in determining grades. Predictive analysis employing ID3 has an accuracy of 65.54%, CHAID 70.67%, and Nave Bayes 73.13%, According to research that has been done, the competition from the Naive Bayes algorithm has succeeded in being slightly superior to other algorithms.
AbstractList College databases are quickly amassing more and more data. Some data, which has not been used to raise the caliber of student performance, includes secret information regarding student performance. Data mining is used to examine accessible educational data and reveal any hidden information that may be there. This study uses a data mining classification model to develop rules that can forecast the final project value of program students' information management based on course values that aid in the final project's preparation. The study's analysis of student performance in courses that help them prepare for their final projects will also be included. According to the subject that underpins their final project, this prediction is supposed to assist in determining grades. Predictive analysis employing ID3 has an accuracy of 65.54%, CHAID 70.67%, and Nave Bayes 73.13%, According to research that has been done, the competition from the Naive Bayes algorithm has succeeded in being slightly superior to other algorithms.
Author Hananto, Andhika Rafi
Berlilana
Hariguna, Taqwa
Author_xml – sequence: 1
  givenname: Taqwa
  surname: Hariguna
  fullname: Hariguna, Taqwa
  email: taqwa@amikompurwokerto.ac.id
– sequence: 2
  surname: Berlilana
  fullname: Berlilana
  email: berlilana@amikompurwokerto.ac.id
  organization: Universitas Amikom Purwokerto,Information Systems Departement,Purwokerto,Indonesia
– sequence: 3
  givenname: Andhika Rafi
  surname: Hananto
  fullname: Hananto, Andhika Rafi
  email: andhikarh90@gmail.com
  organization: Universitas Amikom Purwokerto,Information Systems Departement,Purwokerto,Indonesia
BookMark eNo10M1OAjEQB_Ca6EGRN_BQHwCcbmnLHnEF3AQDEdEjGbtdHLN0TVsOHnx3Fz_mMPM__DKTzAU79a13jF0LGAoB-U1ZLB_LtdIwhmEGWTYUAFIorU5YPzdjobUaKZkrOGdfq-Aqsolaz9uar9Ohcj5FPiOPDV-F9t3ZxJ-xObjIbzG6indyGkIbIifP15Y6TzVZ_hIokd_xTTz2O0zIH8gfc9FgjEeDP3cmza7t7Ns-XrKzGpvo-n-zxzaz6VNxP1gs52UxWQxIiDwNbI0VOjSvXYFTWIMejQCEBKhykyFqo2swwlhnxkpZzEzHpZACZSaNlT129buXnHPbj0B7DJ_b_6_IbyucXzk
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICORIS56080.2022.10031565
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665453950
1665453958
EndPage 6
ExternalDocumentID 10031565
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-cfadaea7bbbb0e5af0644001300d972aa676f0717ce7855ca27aea3131a3237c3
IEDL.DBID RIE
IngestDate Wed May 01 11:49:21 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-cfadaea7bbbb0e5af0644001300d972aa676f0717ce7855ca27aea3131a3237c3
PageCount 6
ParticipantIDs ieee_primary_10031565
PublicationCentury 2000
PublicationDate 2022-Oct.-8
PublicationDateYYYYMMDD 2022-10-08
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-Oct.-8
  day: 08
PublicationDecade 2020
PublicationTitle 2022 4th International Conference on Cybernetics and Intelligent System (ICORIS)
PublicationTitleAbbrev ICORIS
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8112283
Snippet College databases are quickly amassing more and more data. Some data, which has not been used to raise the caliber of student performance, includes secret...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms CHAID Algorithm
Classification algorithms
Data mining
Data models
Decision trees
Educational Data Mining
ID3 Algorithm
Machine Learning
Prediction algorithms
Predictive models
Title Prediction of Students Final Project Values Based on Errors in Scientific Writing Using Data Mining Classification Algorithms
URI https://ieeexplore.ieee.org/document/10031565
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5uB_Gk4sTfRPDa2TZt0x11bmzC5nBOdxtJmszhbKXrLoL_u--lm6Ig2FMpH7S81_Dl5f34CLnQkS8SZQIISxrGAYbyUOYlcBh26nJPQcSBGd1eP-qMgttxOF41q9teGK21LT7Tdby1ufwkU0s8KoMVjpoEUVghFfjPymatTXK-mpt52W3e3XeHQOGxC4Gf79fX-B_KKZY42tukv35lWS_yUl8Wsq7ef01j_Pc37ZDad48eHXyxzy7Z0Oke-RjkmHhBY9PM0GE5uHJBUYV3jnA8daGPYg5kQK-BwBIKyFaeZ_mCzlJqV7qtHqJPOO0onVJbU0BvRCFoz4pJUKujiRjrVHo1n2aAfX5d1Mio3XpodpyVwIIz87xG4SgjEqEFl3C5OhQG9ieBzWW6SYP7QkQ8MhjwKc3jMFTC5wBnHvME8xlXbJ9U0yzVB4RiPlhIpqVRMhAcdjksNqGItZAul8o9JDW03eStnKExWZvt6I_nx2QLXVhW252QapEv9SnQfyHPrNs_AR4Kslc
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG8UE_WkRozf1sTr5rZu6zgqQkABiYByI23XIhE3M8bFxP_dvg40mpi407K8pc1rm997fR8_hC5k6LFYKF-7JRVlaYRygebFtwhU6lJXaI8DIrrtTtgY-LfDYLgoVje1MFJKk3wmbXg1sfw4FXO4KtMnHDgJwmAVrWng94OiXGsdnS86Z142q_cPzZ4G8cjRrp_n2cs_fnCnGOiob6HOctAiY-TFnufcFu-_-jH-e1bbqPxdpYe7X_izg1Zksos-uhmEXkDdOFW4V7SunGHg4Z2CONy74Ec21XCArzWExVhL1rIszWZ4kmBz1k3-EH6CfkfJGJusAnzDcobbhk4CGyZNkDHLiq-m41TLPr_OymhQr_WrDWtBsWBNXLeSW0KxmElGuX4cGTClLRTfRDOduEI9xkIaKnD5hKRREAjmUS1OXOIy4hEqyB4qJWki9xGGiDDjRHIluM-otnNIpAIWScYdyoVzgMqgu9Fb0UVjtFTb4R_fz9BGo99ujVrNzt0R2oTlLHLvjlEpz-byRBsDOT81W-ATnXO1pA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+4th+International+Conference+on+Cybernetics+and+Intelligent+System+%28ICORIS%29&rft.atitle=Prediction+of+Students+Final+Project+Values+Based+on+Errors+in+Scientific+Writing+Using+Data+Mining+Classification+Algorithms&rft.au=Hariguna%2C+Taqwa&rft.au=Berlilana&rft.au=Hananto%2C+Andhika+Rafi&rft.date=2022-10-08&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FICORIS56080.2022.10031565&rft.externalDocID=10031565