A Novel ResMTN-Based Methodology for HVAC AHU Fault Diagnosis

The Backpropagation Multidimensional Taylor Network (BP-MTN) classifier improved based on MTN may face issues such as overfitting and gradient vanishing when solving complex classification problems. To address these issues, this paper proposes a novel classifier, the Residual Multidimensional Taylor...

Full description

Saved in:
Bibliographic Details
Published in2023 Global Reliability and Prognostics and Health Management Conference (PHM-Hangzhou) pp. 1 - 6
Main Authors Yan, Ying, Liu, Guanting, Cai, Jun, Wu, Edmond Qi, Cheok, Adrian David, Sun, Qiming, Li, Ming, Zhou, Ying
Format Conference Proceeding
LanguageEnglish
Published IEEE 12.10.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The Backpropagation Multidimensional Taylor Network (BP-MTN) classifier improved based on MTN may face issues such as overfitting and gradient vanishing when solving complex classification problems. To address these issues, this paper proposes a novel classifier, the Residual Multidimensional Taylor Network (ResMTN) classifier. The classifier introduces the idea of Residual Network (ResNet) in the MTN, by adding a direct connection between the input and the fully connected layer beside the polynomial layer of the MTN, that is, using the skip connection to skip the polynomial layer, thus improving the generalization ability of ResMTN. In addition, in order to improve the parameter learning ability of ResMTN, this paper uses the Adaptive Moment Estimation (Adam) algorithm for parameter estimation to improve the stability of training and learning effect. In experiments, we use the ASHRAE RP-1312 public dataset to verify the performance of the proposed ResMTN-based fault diagnosis method for air handling units. Experimental results show that ResMTN has higher average accuracy than some other existing methods, and the training time of the model is relatively short.
AbstractList The Backpropagation Multidimensional Taylor Network (BP-MTN) classifier improved based on MTN may face issues such as overfitting and gradient vanishing when solving complex classification problems. To address these issues, this paper proposes a novel classifier, the Residual Multidimensional Taylor Network (ResMTN) classifier. The classifier introduces the idea of Residual Network (ResNet) in the MTN, by adding a direct connection between the input and the fully connected layer beside the polynomial layer of the MTN, that is, using the skip connection to skip the polynomial layer, thus improving the generalization ability of ResMTN. In addition, in order to improve the parameter learning ability of ResMTN, this paper uses the Adaptive Moment Estimation (Adam) algorithm for parameter estimation to improve the stability of training and learning effect. In experiments, we use the ASHRAE RP-1312 public dataset to verify the performance of the proposed ResMTN-based fault diagnosis method for air handling units. Experimental results show that ResMTN has higher average accuracy than some other existing methods, and the training time of the model is relatively short.
Author Sun, Qiming
Li, Ming
Wu, Edmond Qi
Cai, Jun
Liu, Guanting
Cheok, Adrian David
Zhou, Ying
Yan, Ying
Author_xml – sequence: 1
  givenname: Ying
  surname: Yan
  fullname: Yan, Ying
  email: ying.yan@nuist.edu.cn
  organization: C-MEIC, CICAEET, School of Automation; Nanjing University of Information Science and Technology,Nanjing,China
– sequence: 2
  givenname: Guanting
  surname: Liu
  fullname: Liu, Guanting
  email: az804784@student.reading.ac.uk
  organization: Reading Academy; Nanjing University of Information Science and Technology,Nanjing,China
– sequence: 3
  givenname: Jun
  surname: Cai
  fullname: Cai, Jun
  email: j.cai@nuist.edu.cn
  organization: C-MEIC, CICAEET, School of Automation; Nanjing University of Information Science and Technology,Nanjing,China
– sequence: 4
  givenname: Edmond Qi
  surname: Wu
  fullname: Wu, Edmond Qi
  email: edmondqwu@sjtu.edu.cn
  organization: Shanghai Jiao Tong University,Department of Automation,Shanghai,China
– sequence: 5
  givenname: Adrian David
  surname: Cheok
  fullname: Cheok, Adrian David
  email: adrian@i-u.ac.jp
  organization: Imagineering Institute; i-University Tokyo,Tokyo,Japan
– sequence: 6
  givenname: Qiming
  surname: Sun
  fullname: Sun, Qiming
  email: sunqm@njfu.edu.cn
  organization: College of Information Science and Technology; Nanjing Forestry University,Nanjing,China
– sequence: 7
  givenname: Ming
  surname: Li
  fullname: Li, Ming
  email: liming@ahszu.edu.cn
  organization: School of Mechanical and Electric Engineering; Suzhou University,Anhui,China
– sequence: 8
  givenname: Ying
  surname: Zhou
  fullname: Zhou, Ying
  email: 202183050025@nuist.edu.cn
  organization: Reading Academy; Nanjing University of Information Science and Technology,Nanjing,China
BookMark eNo1z7FOwzAUQFEjwQClf8DgjSnhvdiO7YEhBEqQmoJQy1o5yXMaKcSoSSuVr2cAprsd6V6x8yEMxNgtQowI9u6tKKPCDe33LhyU0VbHCSQiRpAmkak5Y3OrrREKBKBQ9pLdZ3wVjtTzdxrL9Sp6cCM1vKRpF5rQh_bEfdjz4iPLeVZs-MId-ok_dq4dwtiN1-zCu36k-V9nbLN4WudFtHx9fsmzZdQh2imqa29EJWVCACBU1aSV9lihQQ3gk1qSNKAxrYXXqtJQW5LKKyEagwkZLWbs5tftiGj7te8-3f60_b8SPyD-R4A
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/PHM-Hangzhou58797.2023.10482468
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350301359
EndPage 6
ExternalDocumentID 10482468
Genre orig-research
GrantInformation_xml – fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20211285,BK20200821
  funderid: 10.13039/501100004608
– fundername: National Natural Science Foundation of China
  grantid: 52077105,62206130
  funderid: 10.13039/501100001809
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-ccf83b442e00035bd6b7f1b181700f2c4e480716c3f75b70c9e45f533d812e873
IEDL.DBID RIE
IngestDate Wed May 01 11:49:11 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-ccf83b442e00035bd6b7f1b181700f2c4e480716c3f75b70c9e45f533d812e873
PageCount 6
ParticipantIDs ieee_primary_10482468
PublicationCentury 2000
PublicationDate 2023-Oct.-12
PublicationDateYYYYMMDD 2023-10-12
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-Oct.-12
  day: 12
PublicationDecade 2020
PublicationTitle 2023 Global Reliability and Prognostics and Health Management Conference (PHM-Hangzhou)
PublicationTitleAbbrev PHM-HANGZHOU
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.9016173
Snippet The Backpropagation Multidimensional Taylor Network (BP-MTN) classifier improved based on MTN may face issues such as overfitting and gradient vanishing when...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Air handling unit
Atmospheric modeling
Fault diagnosis
Heating ventilation and air conditioning system
HVAC
multidimensional Taylor network
Polynomials
ResMTN
Stability analysis
Training
Ventilation
Title A Novel ResMTN-Based Methodology for HVAC AHU Fault Diagnosis
URI https://ieeexplore.ieee.org/document/10482468
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA62B_GkYsU3OQiesu4j2d0cPNRqWYRdirTSW9lJslosu2J3PfTXm2RbRUHwEkIgj2EI3zAz3wxCl-AyKXMeEha7gmgL3Ce50oMADUcAjApuuMNpFiYT-jBl0zVZ3XJhlFI2-Uw5Zmpj-bISjXGV6R9OY5-GcQd1Is5bstY2ulrXzbweJSlJ8vJ59VI1LI545Jje4M5m14_-KRY-hrso21zcZo28Ok0Njlj9qsn475ftod43Uw-PvjBoH22p8gDd9HFWfagFflTLdJyRW41UEqe2V7T1omNtqeLkqT_A_WSCh3mzqPFdm3M3X_bQZHg_HiRk3SaBzD2P10SIIg6AUl_ZuCDIEKLCA8-W3it8QZWhjXuhCIqIQeQKrigrtJknNbirOAoOUbesSnWEsNBABkHuuTmVlIPkAiAPY222gOvrY45Rz8g-e2srYcw2Yp_8sX6KdowKiM0AOUPd-r1R5xrEa7iwyvsE3pibVw
link.rule.ids 310,311,783,787,792,793,799,27939,55088
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5aQT2pWPFtDoKnrPtI9nHwUKtl1e5SpJXeyk6S1WLZFbvrob_eJG0VBcFLCIG8COH7mJlvBqFzsJkQWeQTFtqcKAbukkyqhoOCIwBGeaS1w0nqxwN6P2TDhVjdaGGklCb4TFq6a3z5ouS1NpWpH05Dl_rhKlpjmljM5Vrr6GKROfOyFyckzorn2UtZszCIAktXB7eW835UUDEA0tlC6XLredzIq1VXYPHZr6yM_z7bNmp-a_Vw7wuFdtCKLHbRVQun5Yec4Ec5TfopuVZYJXBiqkUbOzpWXBXHT602bsUD3MnqSYVv5lF342kTDTq3_XZMFoUSyNhxoopwnoceUOpK4xkE4UOQO-CY5Hu5y6nUwnHH514eMAhsHknKckX0hIJ3GQbeHmoUZSH3EeYKysDLHDujgkYgIg6Q-aEiLmC7apkD1NR3H73Nc2GMltc-_GP8DG3E_aQ76t6lD0doUz8HMfEgx6hRvdfyREF6BafmIT8BNdGepA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+Global+Reliability+and+Prognostics+and+Health+Management+Conference+%28PHM-Hangzhou%29&rft.atitle=A+Novel+ResMTN-Based+Methodology+for+HVAC+AHU+Fault+Diagnosis&rft.au=Yan%2C+Ying&rft.au=Liu%2C+Guanting&rft.au=Cai%2C+Jun&rft.au=Wu%2C+Edmond+Qi&rft.date=2023-10-12&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FPHM-Hangzhou58797.2023.10482468&rft.externalDocID=10482468