A Novel ResMTN-Based Methodology for HVAC AHU Fault Diagnosis
The Backpropagation Multidimensional Taylor Network (BP-MTN) classifier improved based on MTN may face issues such as overfitting and gradient vanishing when solving complex classification problems. To address these issues, this paper proposes a novel classifier, the Residual Multidimensional Taylor...
Saved in:
Published in | 2023 Global Reliability and Prognostics and Health Management Conference (PHM-Hangzhou) pp. 1 - 6 |
---|---|
Main Authors | , , , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
12.10.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The Backpropagation Multidimensional Taylor Network (BP-MTN) classifier improved based on MTN may face issues such as overfitting and gradient vanishing when solving complex classification problems. To address these issues, this paper proposes a novel classifier, the Residual Multidimensional Taylor Network (ResMTN) classifier. The classifier introduces the idea of Residual Network (ResNet) in the MTN, by adding a direct connection between the input and the fully connected layer beside the polynomial layer of the MTN, that is, using the skip connection to skip the polynomial layer, thus improving the generalization ability of ResMTN. In addition, in order to improve the parameter learning ability of ResMTN, this paper uses the Adaptive Moment Estimation (Adam) algorithm for parameter estimation to improve the stability of training and learning effect. In experiments, we use the ASHRAE RP-1312 public dataset to verify the performance of the proposed ResMTN-based fault diagnosis method for air handling units. Experimental results show that ResMTN has higher average accuracy than some other existing methods, and the training time of the model is relatively short. |
---|---|
AbstractList | The Backpropagation Multidimensional Taylor Network (BP-MTN) classifier improved based on MTN may face issues such as overfitting and gradient vanishing when solving complex classification problems. To address these issues, this paper proposes a novel classifier, the Residual Multidimensional Taylor Network (ResMTN) classifier. The classifier introduces the idea of Residual Network (ResNet) in the MTN, by adding a direct connection between the input and the fully connected layer beside the polynomial layer of the MTN, that is, using the skip connection to skip the polynomial layer, thus improving the generalization ability of ResMTN. In addition, in order to improve the parameter learning ability of ResMTN, this paper uses the Adaptive Moment Estimation (Adam) algorithm for parameter estimation to improve the stability of training and learning effect. In experiments, we use the ASHRAE RP-1312 public dataset to verify the performance of the proposed ResMTN-based fault diagnosis method for air handling units. Experimental results show that ResMTN has higher average accuracy than some other existing methods, and the training time of the model is relatively short. |
Author | Sun, Qiming Li, Ming Wu, Edmond Qi Cai, Jun Liu, Guanting Cheok, Adrian David Zhou, Ying Yan, Ying |
Author_xml | – sequence: 1 givenname: Ying surname: Yan fullname: Yan, Ying email: ying.yan@nuist.edu.cn organization: C-MEIC, CICAEET, School of Automation; Nanjing University of Information Science and Technology,Nanjing,China – sequence: 2 givenname: Guanting surname: Liu fullname: Liu, Guanting email: az804784@student.reading.ac.uk organization: Reading Academy; Nanjing University of Information Science and Technology,Nanjing,China – sequence: 3 givenname: Jun surname: Cai fullname: Cai, Jun email: j.cai@nuist.edu.cn organization: C-MEIC, CICAEET, School of Automation; Nanjing University of Information Science and Technology,Nanjing,China – sequence: 4 givenname: Edmond Qi surname: Wu fullname: Wu, Edmond Qi email: edmondqwu@sjtu.edu.cn organization: Shanghai Jiao Tong University,Department of Automation,Shanghai,China – sequence: 5 givenname: Adrian David surname: Cheok fullname: Cheok, Adrian David email: adrian@i-u.ac.jp organization: Imagineering Institute; i-University Tokyo,Tokyo,Japan – sequence: 6 givenname: Qiming surname: Sun fullname: Sun, Qiming email: sunqm@njfu.edu.cn organization: College of Information Science and Technology; Nanjing Forestry University,Nanjing,China – sequence: 7 givenname: Ming surname: Li fullname: Li, Ming email: liming@ahszu.edu.cn organization: School of Mechanical and Electric Engineering; Suzhou University,Anhui,China – sequence: 8 givenname: Ying surname: Zhou fullname: Zhou, Ying email: 202183050025@nuist.edu.cn organization: Reading Academy; Nanjing University of Information Science and Technology,Nanjing,China |
BookMark | eNo1z7FOwzAUQFEjwQClf8DgjSnhvdiO7YEhBEqQmoJQy1o5yXMaKcSoSSuVr2cAprsd6V6x8yEMxNgtQowI9u6tKKPCDe33LhyU0VbHCSQiRpAmkak5Y3OrrREKBKBQ9pLdZ3wVjtTzdxrL9Sp6cCM1vKRpF5rQh_bEfdjz4iPLeVZs-MId-ok_dq4dwtiN1-zCu36k-V9nbLN4WudFtHx9fsmzZdQh2imqa29EJWVCACBU1aSV9lihQQ3gk1qSNKAxrYXXqtJQW5LKKyEagwkZLWbs5tftiGj7te8-3f60_b8SPyD-R4A |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/PHM-Hangzhou58797.2023.10482468 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9798350301359 |
EndPage | 6 |
ExternalDocumentID | 10482468 |
Genre | orig-research |
GrantInformation_xml | – fundername: Natural Science Foundation of Jiangsu Province grantid: BK20211285,BK20200821 funderid: 10.13039/501100004608 – fundername: National Natural Science Foundation of China grantid: 52077105,62206130 funderid: 10.13039/501100001809 |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i119t-ccf83b442e00035bd6b7f1b181700f2c4e480716c3f75b70c9e45f533d812e873 |
IEDL.DBID | RIE |
IngestDate | Wed May 01 11:49:11 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i119t-ccf83b442e00035bd6b7f1b181700f2c4e480716c3f75b70c9e45f533d812e873 |
PageCount | 6 |
ParticipantIDs | ieee_primary_10482468 |
PublicationCentury | 2000 |
PublicationDate | 2023-Oct.-12 |
PublicationDateYYYYMMDD | 2023-10-12 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-Oct.-12 day: 12 |
PublicationDecade | 2020 |
PublicationTitle | 2023 Global Reliability and Prognostics and Health Management Conference (PHM-Hangzhou) |
PublicationTitleAbbrev | PHM-HANGZHOU |
PublicationYear | 2023 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.9016173 |
Snippet | The Backpropagation Multidimensional Taylor Network (BP-MTN) classifier improved based on MTN may face issues such as overfitting and gradient vanishing when... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Air handling unit Atmospheric modeling Fault diagnosis Heating ventilation and air conditioning system HVAC multidimensional Taylor network Polynomials ResMTN Stability analysis Training Ventilation |
Title | A Novel ResMTN-Based Methodology for HVAC AHU Fault Diagnosis |
URI | https://ieeexplore.ieee.org/document/10482468 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA62B_GkYsU3OQiesu4j2d0cPNRqWYRdirTSW9lJslosu2J3PfTXm2RbRUHwEkIgj2EI3zAz3wxCl-AyKXMeEha7gmgL3Ce50oMADUcAjApuuMNpFiYT-jBl0zVZ3XJhlFI2-Uw5Zmpj-bISjXGV6R9OY5-GcQd1Is5bstY2ulrXzbweJSlJ8vJ59VI1LI545Jje4M5m14_-KRY-hrso21zcZo28Ok0Njlj9qsn475ftod43Uw-PvjBoH22p8gDd9HFWfagFflTLdJyRW41UEqe2V7T1omNtqeLkqT_A_WSCh3mzqPFdm3M3X_bQZHg_HiRk3SaBzD2P10SIIg6AUl_ZuCDIEKLCA8-W3it8QZWhjXuhCIqIQeQKrigrtJknNbirOAoOUbesSnWEsNBABkHuuTmVlIPkAiAPY222gOvrY45Rz8g-e2srYcw2Yp_8sX6KdowKiM0AOUPd-r1R5xrEa7iwyvsE3pibVw |
link.rule.ids | 310,311,783,787,792,793,799,27939,55088 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5aQT2pWPFtDoKnrPtI9nHwUKtl1e5SpJXeyk6S1WLZFbvrob_eJG0VBcFLCIG8COH7mJlvBqFzsJkQWeQTFtqcKAbukkyqhoOCIwBGeaS1w0nqxwN6P2TDhVjdaGGklCb4TFq6a3z5ouS1NpWpH05Dl_rhKlpjmljM5Vrr6GKROfOyFyckzorn2UtZszCIAktXB7eW835UUDEA0tlC6XLredzIq1VXYPHZr6yM_z7bNmp-a_Vw7wuFdtCKLHbRVQun5Yec4Ec5TfopuVZYJXBiqkUbOzpWXBXHT602bsUD3MnqSYVv5lF342kTDTq3_XZMFoUSyNhxoopwnoceUOpK4xkE4UOQO-CY5Hu5y6nUwnHH514eMAhsHknKckX0hIJ3GQbeHmoUZSH3EeYKysDLHDujgkYgIg6Q-aEiLmC7apkD1NR3H73Nc2GMltc-_GP8DG3E_aQ76t6lD0doUz8HMfEgx6hRvdfyREF6BafmIT8BNdGepA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+Global+Reliability+and+Prognostics+and+Health+Management+Conference+%28PHM-Hangzhou%29&rft.atitle=A+Novel+ResMTN-Based+Methodology+for+HVAC+AHU+Fault+Diagnosis&rft.au=Yan%2C+Ying&rft.au=Liu%2C+Guanting&rft.au=Cai%2C+Jun&rft.au=Wu%2C+Edmond+Qi&rft.date=2023-10-12&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FPHM-Hangzhou58797.2023.10482468&rft.externalDocID=10482468 |