Application of Improved Quantum Particle Swarm Optimization Algorithm to Multi-Task Assignment for Heterogeneous UAVs

Cooperative task assignment of unmanned aerial vehicles (UAVs) in complex scenarios is widely studied in recent years. The purpose of this paper is to explore new methods in complex scenarios. Scenarios discussed in this paper consist of the UAVs' heterogeneity of range, speed and constraints o...

Full description

Saved in:
Bibliographic Details
Published in2022 6th Asian Conference on Artificial Intelligence Technology (ACAIT) pp. 1 - 5
Main Authors Zhang, Jie, Wen, Pengcheng, Xiong, Ai
Format Conference Proceeding
LanguageEnglish
Published IEEE 09.12.2022
Subjects
Online AccessGet full text
DOI10.1109/ACAIT56212.2022.10137945

Cover

Abstract Cooperative task assignment of unmanned aerial vehicles (UAVs) in complex scenarios is widely studied in recent years. The purpose of this paper is to explore new methods in complex scenarios. Scenarios discussed in this paper consist of the UAVs' heterogeneity of range, speed and constraints of multi-task, time window in the task assignment process. Based on the objective function of the task completion time, mathematical model is constructed. Subsequently, the improved quantum particle swarm optimization (QPSO) algorithm is applied to solve the problem. Relationship between the particle position in the QPSO algorithm and the task allocation solution is established by the encoding and repair-based method, and feasible task allocation scheme is obtained. Large number of simulations show that the improved QPSO algorithm is effective in the heterogeneous UAVs' multi-task assignment problem.
AbstractList Cooperative task assignment of unmanned aerial vehicles (UAVs) in complex scenarios is widely studied in recent years. The purpose of this paper is to explore new methods in complex scenarios. Scenarios discussed in this paper consist of the UAVs' heterogeneity of range, speed and constraints of multi-task, time window in the task assignment process. Based on the objective function of the task completion time, mathematical model is constructed. Subsequently, the improved quantum particle swarm optimization (QPSO) algorithm is applied to solve the problem. Relationship between the particle position in the QPSO algorithm and the task allocation solution is established by the encoding and repair-based method, and feasible task allocation scheme is obtained. Large number of simulations show that the improved QPSO algorithm is effective in the heterogeneous UAVs' multi-task assignment problem.
Author Xiong, Ai
Wen, Pengcheng
Zhang, Jie
Author_xml – sequence: 1
  givenname: Jie
  surname: Zhang
  fullname: Zhang, Jie
  email: zj@cuit.edu.cn
  organization: Chengdu University of Information Technology,School of Automation,Chengdu,China
– sequence: 2
  givenname: Pengcheng
  surname: Wen
  fullname: Wen, Pengcheng
  email: wpc_education@163.com
  organization: Chengdu University of Information Technology,School of Automation,Chengdu,China
– sequence: 3
  givenname: Ai
  surname: Xiong
  fullname: Xiong, Ai
  email: xiongai@cuit.edu.cn
  organization: Chengdu University of Information Technology,School of Automation,Chengdu,China
BookMark eNo1kLFOwzAUAI0EA5T-AYN_IMXPie1kjCqglYoA0bJWdnguFrEdOQ4Ivh6kwnTL6Ya7IKchBiSEAlsAsOa6XbbrrZAc-IIzzhfAoFRNJU7IvFE1SCkqUf6a52Rqh6F3nc4uBhotXfshxQ98pU-TDnny9FGn7Loe6fOnTp4-DNl593302_4Qk8tvnuZI76c-u2Krx3fajqM7BI8hUxsTXWHGFA8YME4j3bUv4yU5s7ofcf7HGdnd3myXq2LzcLdetpvCATS56JQxkmujLO_ANBa1kl0NVSPAcq4AlVZ1JXUtZKm5YWiZqQBZrTtRW8PKGbk6dh0i7ofkvE5f-_8b5Q_bA1yC
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ACAIT56212.2022.10137945
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665453110
1665453117
EndPage 5
ExternalDocumentID 10137945
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-c7bb62ab7f2c1b9fea76c814951f2271e7a7846a8563a2b0ef0b41e08ac58fb03
IEDL.DBID RIE
IngestDate Thu Jan 18 11:13:10 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-c7bb62ab7f2c1b9fea76c814951f2271e7a7846a8563a2b0ef0b41e08ac58fb03
PageCount 5
ParticipantIDs ieee_primary_10137945
PublicationCentury 2000
PublicationDate 2022-Dec.-9
PublicationDateYYYYMMDD 2022-12-09
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-Dec.-9
  day: 09
PublicationDecade 2020
PublicationTitle 2022 6th Asian Conference on Artificial Intelligence Technology (ACAIT)
PublicationTitleAbbrev ACAIT
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8468318
Snippet Cooperative task assignment of unmanned aerial vehicles (UAVs) in complex scenarios is widely studied in recent years. The purpose of this paper is to explore...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms cooperative task assignment
Encoding
Linear programming
Mathematical models
Multitasking
muti-task
QPSO
Reliability
Resource management
Time factors
time window
UAVs
Title Application of Improved Quantum Particle Swarm Optimization Algorithm to Multi-Task Assignment for Heterogeneous UAVs
URI https://ieeexplore.ieee.org/document/10137945
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LSgMxFA22K1cqVnyThduMk8x7WcRSBWvFVroredzUUtuRdgbBrzfJzFgUBHchJCTce5OTxzkJQleZ8oFlkhJuZkgSqjAiIowVSZQvDV4JiLgVJz8M4v44vJ9Ek1qs7rQwAODIZ-DZpLvLV7ks7VGZGeE0MPETtVDLxFkl1mrYOX52bTp_NzJ4Tq3AijGvKf7j4xSHG709NGharOgiC68shCc_fz3G-O8u7aPOVqKHh9_gc4B2YHWIyu72OhrnGlcnBqDwU2kMWC7xsA4U_PzB10v8aOaLZS3ExN23Wb6eF69LXOTY6XLJiG8W2DhwPnOcAWwWuLhv-TO5CTvIyw0ed182HTTu3Y5u-qT-V4HMKc0KIhMhYsZFopmkItPAk1imdqtENWMJhYQnZlnC0ygOOBM-aF-EFPyUyyjVwg-OUHuVr-AYYaCKcRWEAUgR6sTszE1loSmTgikViBPUsTabvldPZ0wbc53-kX-Gdq3rHF8kO0ftYl3ChUH9Qlw6b38BO46xbg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5aD3pSseLbHLzuusm-j0UsW21rxa30VvKYaKnblXYXwV9v9mVRELyFQEiYmeSbJN-XIHQVSgtoKIjB9AppONJxDe540vClJTRecXBZIU4eDL1o7NxN3EktVi-1MABQks_ALIrlXb5MRV4clekZTmwdP-4m2tLA77iVXKvh51jhtR5-L9aITgqJFaVm0-DH1yklcnR30bDpsyKMzM0846b4_PUc478HtYfaa5EeHn3Dzz7agMUByjvrC2mcKlydGYDEj7k2YZ7gUR0q-OmDLRP8oFeMpJZi4s7bS7qcZa8JzlJcKnONmK3mWLtw9lKyBrBOcXFUMGhSHXiQ5is87jyv2mjcvY1vIqP-WcGYERJmhvA59yjjvqKC8FAB8z0RFJsloij1CfjM14kJC1zPZpRboCzuELACJtxAccs-RK1FuoAjhIFIyqTt2CC4o3y9N9eNuSJUcCqlzY9Ru7DZ9L16PGPamOvkj_pLtB3Fg_603xven6Kdwo0leyQ8Q61smcO5zgEyflF6_guuWrS7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+6th+Asian+Conference+on+Artificial+Intelligence+Technology+%28ACAIT%29&rft.atitle=Application+of+Improved+Quantum+Particle+Swarm+Optimization+Algorithm+to+Multi-Task+Assignment+for+Heterogeneous+UAVs&rft.au=Zhang%2C+Jie&rft.au=Wen%2C+Pengcheng&rft.au=Xiong%2C+Ai&rft.date=2022-12-09&rft.pub=IEEE&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FACAIT56212.2022.10137945&rft.externalDocID=10137945