How far is too far? Identifying suspicious travel patterns in healthcare claims using machine learning

Fraud in healthcare services and claims poses a significant threat to healthcare expenditure, accessibility to health services, and quality of care of members. One important type of member-provider collusion is where members travel unreason-able distances seeking healthcare services. Such activities...

Full description

Saved in:
Bibliographic Details
Published in2023 International Conference on Machine Learning and Applications (ICMLA) pp. 610 - 617
Main Authors Wang, Kai, Lasaga, Daniel, Helms, John, Bowen, Edward, Bhattacharya, Sanmitra
Format Conference Proceeding
LanguageEnglish
Published IEEE 15.12.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Fraud in healthcare services and claims poses a significant threat to healthcare expenditure, accessibility to health services, and quality of care of members. One important type of member-provider collusion is where members travel unreason-able distances seeking healthcare services. Such activities could be indicators of "pill mills", doctor shopping, or referral kickback schemes. Previous research on the identification of suspicious travel distances have focused mostly on the billed amount and considered select diagnosis conditions and travel distances at zip code or county levels. Compared to these studies, our proposed framework focuses on claims across various diagnoses and takes into account population densities of members' zip codes, and provider densities for various specialties, among other features, which are critical to the prediction of travel distances. We exper-iment with two approaches - i) a regression model paired with a statistical anomalous distance detector, and ii) a neural network-based model paired with a likelihood estimator for anomalous distance detection. The evaluation of these models on a manually annotated dataset shows that the second approach outperforms the first one in identifying anomalous travel distances.
AbstractList Fraud in healthcare services and claims poses a significant threat to healthcare expenditure, accessibility to health services, and quality of care of members. One important type of member-provider collusion is where members travel unreason-able distances seeking healthcare services. Such activities could be indicators of "pill mills", doctor shopping, or referral kickback schemes. Previous research on the identification of suspicious travel distances have focused mostly on the billed amount and considered select diagnosis conditions and travel distances at zip code or county levels. Compared to these studies, our proposed framework focuses on claims across various diagnoses and takes into account population densities of members' zip codes, and provider densities for various specialties, among other features, which are critical to the prediction of travel distances. We exper-iment with two approaches - i) a regression model paired with a statistical anomalous distance detector, and ii) a neural network-based model paired with a likelihood estimator for anomalous distance detection. The evaluation of these models on a manually annotated dataset shows that the second approach outperforms the first one in identifying anomalous travel distances.
Author Bowen, Edward
Wang, Kai
Lasaga, Daniel
Bhattacharya, Sanmitra
Helms, John
Author_xml – sequence: 1
  givenname: Kai
  surname: Wang
  fullname: Wang, Kai
  email: kawang@deloitte.com
  organization: Deloitte & Touche LLP,United States
– sequence: 2
  givenname: Daniel
  surname: Lasaga
  fullname: Lasaga, Daniel
  email: dlasaga@deloitte.com
  organization: Deloitte & Touche LLP,United States
– sequence: 3
  givenname: John
  surname: Helms
  fullname: Helms, John
  email: johhelms@deloitte.com
  organization: Deloitte & Touche LLP,United States
– sequence: 4
  givenname: Edward
  surname: Bowen
  fullname: Bowen, Edward
  email: edbowen@deloitte.com
  organization: Deloitte & Touche LLP,United States
– sequence: 5
  givenname: Sanmitra
  surname: Bhattacharya
  fullname: Bhattacharya, Sanmitra
  email: sanmbhattacharya@deloitte.com
  organization: Deloitte & Touche LLP,United States
BookMark eNotT8tKAzEUjaJgrf0DhfzA1LwzdyWl-ChU3Oi6ZDI3NjLNlGSq9O-doqtzOC841-Qi9QkJueNszjmD-9Xydb3QNVg7F0zIOWMM2BmZgYVaaiaVlsqckwkHZSpmNVyRWSlfY2xsG5AwIeGl_6HBZRoLHfr-RB_oqsU0xHCM6ZOWQ9lHH_vD6Gf3jR3du2HAnAqNiW7RdcPWu4zUdy7uCj2UU2vn_DYmpB26nEbhhlwG1xWc_eOUfDw9vi9fqvXb82q5WFeRcxgqL7mpPSoRWiGcaDRai1ah8iEwQD6-lgrqtmWqVR5NkL4xqLk2TRCNN3JKbv92IyJu9jnuXD5uOFMaagbyF3BCW-0
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICMLA58977.2023.00090
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore (IEEE/IET Electronic Library - IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350345346
EISSN 1946-0759
EndPage 617
ExternalDocumentID 10459809
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
OCL
RIE
RIL
RNS
ID FETCH-LOGICAL-i119t-c3168ce42fd22a2b5e77e74e4cff09e11103498dd04d4ce6f3cb6e5156bf2bc63
IEDL.DBID RIE
IngestDate Wed Jun 26 19:43:05 EDT 2024
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-c3168ce42fd22a2b5e77e74e4cff09e11103498dd04d4ce6f3cb6e5156bf2bc63
PageCount 8
ParticipantIDs ieee_primary_10459809
PublicationCentury 2000
PublicationDate 2023-Dec.-15
PublicationDateYYYYMMDD 2023-12-15
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-Dec.-15
  day: 15
PublicationDecade 2020
PublicationTitle 2023 International Conference on Machine Learning and Applications (ICMLA)
PublicationTitleAbbrev ICMLA
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001096939
Score 2.2926726
Snippet Fraud in healthcare services and claims poses a significant threat to healthcare expenditure, accessibility to health services, and quality of care of members....
SourceID ieee
SourceType Publisher
StartPage 610
SubjectTerms Anomaly Detection
Codes
Detectors
Gastroenterology
Geographic Information Systems
GIS
Machine learning
Medical services
Mental health
Neural Networks
Pain
Title How far is too far? Identifying suspicious travel patterns in healthcare claims using machine learning
URI https://ieeexplore.ieee.org/document/10459809
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA-6kycVJ36Tg9fWNU3b5CQyHFPc8OBgt9GkL7O4tWPtEPzrzUvrBoLgLe2l5YW-9yP9fRByK42dG0IxryeAezwC5UmLfD0IONMh9sUM9c6jcTyc8OdpNG3F6k4LAwCOfAY-Lt2__KzUGzwqs184j6RAud5-IuNGrLU7ULFgXIayVenYq7un_ujlIRIW4fgYEo5Wha717lJU3BAZHJLxz-Mb7siHv6mVr79-OTP--_2OSHen16Ov20l0TPagOCFmWH5Sk65pXtG6LHF5TxtdrtM20WpTrXKNHFhaYwjRgq6c2WZR0byg71tiGNWLNF9WFCnyc7p07EugbdzEvEsmg8e3_tBrUxW8PAhk7WmMqtLAmckYS5mKIEkg4cC1MT0JtvehZY3Ish7PuIbYhFrFYGFPrAxTOg5PSacoCzgjNE0SxbjSPBCKB0bIWGSphYS2zEZFSXhOulik2aoxzpj91Ofij_uX5AA3CtkiQXRFOvV6A9d25tfqxu31N3cqrLM
link.rule.ids 309,310,780,784,789,790,796,27925,54758
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA8yD3pSceK3OXhtXdOkbU4iwzF1Gx422G006cssbu1YWwT_epO020AQvKU9hRf63o_094HQPVd6bkSCOJ0IqEMZCIdr5OuAR4n0TV9MjN55OAr6E_o6ZdNGrG61MABgyWfgmqX9l5_ksjJXZfoLp4xHRq63z6gGurVca3elouE493mj09FPDy_d4eCJRRrjuCYm3JgV2ua7y1GxY6R3hEabDdTskU-3KoUrv395M_57h8eovVPs4fftLDpBe5CdItXPv7CK1zgtcJnnZvmIa2WuVTfhoipWqTQsWFyaGKIFXlm7zazAaYY_ttQwLBdxuiywIcnP8dLyLwE3gRPzNpr0nsfdvtPkKjip5_HSkSasSgIlKiEkJoJBGEJIgUqlOhx09zOmNVGSdGhCJQTKlyIADXwCoYiQgX-GWlmewTnCcRgKQoWkXiSopyIeREmsQaEusxIs9C9Q2xRptqqtM2ab-lz-8f4OHfTHw8Fs8DJ6u0KH5tAMd8Rj16hVriu40QigFLf23H8AuySwBg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+International+Conference+on+Machine+Learning+and+Applications+%28ICMLA%29&rft.atitle=How+far+is+too+far%3F+Identifying+suspicious+travel+patterns+in+healthcare+claims+using+machine+learning&rft.au=Wang%2C+Kai&rft.au=Lasaga%2C+Daniel&rft.au=Helms%2C+John&rft.au=Bowen%2C+Edward&rft.date=2023-12-15&rft.pub=IEEE&rft.eissn=1946-0759&rft.spage=610&rft.epage=617&rft_id=info:doi/10.1109%2FICMLA58977.2023.00090&rft.externalDocID=10459809