Autonomous Navigation of UAV in Dynamic Unstructured Environments via Hierarchical Reinforcement Learning

Autonomous navigation of unmanned aerial vehicle (UAV) is one of the fundamental yet completely solved problems in automatic control. In this paper, an option-based hierarchical reinforcement learning approach is proposed for UAV autonomous navigation. Specifically, the proposed method consists of a...

Full description

Saved in:
Bibliographic Details
Published in2022 International Conference on Automation, Robotics and Computer Engineering (ICARCE) pp. 1 - 5
Main Authors Kou, Kai, Yang, Gang, Zhang, Wenqi, Wang, Chenyi, Yao, Yuan, Zhou, Xingshe
Format Conference Proceeding
LanguageEnglish
Published IEEE 16.12.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Autonomous navigation of unmanned aerial vehicle (UAV) is one of the fundamental yet completely solved problems in automatic control. In this paper, an option-based hierarchical reinforcement learning approach is proposed for UAV autonomous navigation. Specifically, the proposed method consists of a high-level and two low-level model, where the high level behavior selection model learns a stable and reliable behavior selection strategy automatically, while the low-level obstacle avoidance model and target-driven control model implement two behavior strategies, obstacle avoidance and target approach, respectively, thus avoiding the dependence on manually designed control rules. Furthermore, the proposed model is pre-trained on large public dataset, allowing the model to converge quickly in various complex unstructured flight environments. Extensive experiments show that the proposed method indicates an overall advantage in various evaluation metrics, which indicating that the proposed method has a strong generalization capability in autonomous navigation task of UAV.
AbstractList Autonomous navigation of unmanned aerial vehicle (UAV) is one of the fundamental yet completely solved problems in automatic control. In this paper, an option-based hierarchical reinforcement learning approach is proposed for UAV autonomous navigation. Specifically, the proposed method consists of a high-level and two low-level model, where the high level behavior selection model learns a stable and reliable behavior selection strategy automatically, while the low-level obstacle avoidance model and target-driven control model implement two behavior strategies, obstacle avoidance and target approach, respectively, thus avoiding the dependence on manually designed control rules. Furthermore, the proposed model is pre-trained on large public dataset, allowing the model to converge quickly in various complex unstructured flight environments. Extensive experiments show that the proposed method indicates an overall advantage in various evaluation metrics, which indicating that the proposed method has a strong generalization capability in autonomous navigation task of UAV.
Author Kou, Kai
Zhang, Wenqi
Zhou, Xingshe
Wang, Chenyi
Yang, Gang
Yao, Yuan
Author_xml – sequence: 1
  givenname: Kai
  surname: Kou
  fullname: Kou, Kai
  email: kaikou@mail.nwpu.edu.cn
  organization: Northwestern Polytechnical University,School of Computer Science,Xi'an,China,710072
– sequence: 2
  givenname: Gang
  surname: Yang
  fullname: Yang, Gang
  email: yeungg@nwpu.edu.cn
  organization: Northwestern Polytechnical University,School of Computer Science,Xi'an,China,710072
– sequence: 3
  givenname: Wenqi
  surname: Zhang
  fullname: Zhang, Wenqi
  email: michaelzwq@mail.nwpu.edu.cn
  organization: Northwestern Polytechnical University,School of Computer Science,Xi'an,China,710072
– sequence: 4
  givenname: Chenyi
  surname: Wang
  fullname: Wang, Chenyi
  email: wangchenyi@mail.nwpu.edu.cn
  organization: Northwestern Polytechnical University,School of Computer Science,Xi'an,China,710072
– sequence: 5
  givenname: Yuan
  surname: Yao
  fullname: Yao, Yuan
  email: yaoyuan@nwpu.edu.cn
  organization: Northwestern Polytechnical University,School of Computer Science,Xi'an,China,710072
– sequence: 6
  givenname: Xingshe
  surname: Zhou
  fullname: Zhou, Xingshe
  email: zhouxingshe@nwpu.edu.cn
  organization: Northwestern Polytechnical University,School of Computer Science,Xi'an,China,710072
BookMark eNo1kMFKAzEURSPoQmv_wEX8gNa8SWYyWZZarVAUinVb3sSX-qCTSGam0L-3Ul3dCwcuh3sjLmOKJMQ9qCmAcg8v89l6vihLW5hpoYpiCkqZqirLCzF2toZTNbY0dX0teDb0KaY2DZ18xQPvsOcUZQpyM_uQHOXjMWLLXm5i1-fB90OmT7mIB84pthT7Th4Y5ZIpY_Zf7HEv18QxpOzpl8sVYY4cd7fiKuC-o_FfjsTmafE-X05Wb88n4dWEAVw_aZqmdlqjCwatrTSGsmoQfKgAalKWyJALlYJgArpaOwVKe7AOmiJ4q_RI3J13mYi235lbzMft_wP6B3MbWFc
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICARCE55724.2022.10046655
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9781665475488
166547548X
EndPage 5
ExternalDocumentID 10046655
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 10.13039/501100001809
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-bbb8933a9f4a7763af56ba1cf6118e07ee4e9f601f4fa98390103c1791b2fc703
IEDL.DBID RIE
IngestDate Wed Aug 27 02:14:11 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-bbb8933a9f4a7763af56ba1cf6118e07ee4e9f601f4fa98390103c1791b2fc703
PageCount 5
ParticipantIDs ieee_primary_10046655
PublicationCentury 2000
PublicationDate 2022-Dec.-16
PublicationDateYYYYMMDD 2022-12-16
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-Dec.-16
  day: 16
PublicationDecade 2020
PublicationTitle 2022 International Conference on Automation, Robotics and Computer Engineering (ICARCE)
PublicationTitleAbbrev ICARCE
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8190179
Snippet Autonomous navigation of unmanned aerial vehicle (UAV) is one of the fundamental yet completely solved problems in automatic control. In this paper, an...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Autonomous Navigation
Hierarchical Reinforcement Learning
Unmanned Aerial Vehicle (UAV)
Title Autonomous Navigation of UAV in Dynamic Unstructured Environments via Hierarchical Reinforcement Learning
URI https://ieeexplore.ieee.org/document/10046655
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFA1uD-KTihO_ieBrurVNUvs45sYUHDKs7G3k40aK0g5p9-CvN0k7v0DwrYSGpAnk5Nzecy5CVypUWlOjCQNGCQ0hJZIJTtJEacaFsaju1Mj3Mz7N6N2CLVqxutfCAIBPPoPAPfp_-bpUtQuV9Z27GeeMdVDHMrdGrLWNLlvfzP7taDgfjRlLIhcsiaJg8_6PyikeOCa7aLYZsskXeQnqSgbq_Zcb47_ntId6Xxo9_PCJPvtoC4oDlA_ryqkULJ3HM7H29hllgUuDs-ETzgt80xSgx1lrHFu_gcbjb2I3vM4FnuZOluyrpLziOXhzVeXjiLj1Y33uoWwyfhxNSVtMgeRhmFZESmmvJrFIDRWJPVSEYVyKUBluKQYMEgAKqbH0zFAj0msXChnEypmXysgoey4com5RFnCEsKWcQti-OuaCKot2EIexFNrwhEswcIx6bp2Wq8YvY7lZopM_2k_RjtsulyQS8jPUtd8P5xbqK3nht_gDf-OtFA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3JTsMwEB0VkIATIIrYMRIc0zZp7JADh6qLWroIIYp6K7YzRhGQIGiKyr_wK3wbdrqwSBwrcbMiOYlnbM3ieW8ATqQtg8BVgUWRupZro28JypnlezKgjCtt1Q0aud1h9a570aO9DLzPsDCImBafYc4M07v8IJaJSZXlDbsZY3RaQ9nE0auO0F7OGxWtzlPHqVWvy3Vr0kTACm3bH1hCCNNRnvvK5Z4-TFxRJrgtFdOuNRY8RBd9pcMS5Srun5kUQKEoDWmncJTU50G_dwGWtKNBnTE8bBmOJ0ydef2dq3KVUs8x6RnHyU3_8EevltRU1dbgY7rIcYXKfS4ZiJx8-8X_-G-lsA7ZLxQiuZzZ1w3IYLQJYSkZGBxGnLyQDh-mBCFxRGJFuqUbEkakMor4YyhJd0KNmzxjQKrf4HxkGHJSDw3wOu0D80CuMKWPlWmmlEwYZ--y0J3LGrdgMYoj3Aaig2rO9dygyLgrtT3Hol0UPFDMYwIV7kDW6KX_NGYE6U9VsvvH8yNYqV-3W_1Wo9Pcg1WzVUxJjM32YVHLAg-0YzMQh-n2InA7b01-AooPCmY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+International+Conference+on+Automation%2C+Robotics+and+Computer+Engineering+%28ICARCE%29&rft.atitle=Autonomous+Navigation+of+UAV+in+Dynamic+Unstructured+Environments+via+Hierarchical+Reinforcement+Learning&rft.au=Kou%2C+Kai&rft.au=Yang%2C+Gang&rft.au=Zhang%2C+Wenqi&rft.au=Wang%2C+Chenyi&rft.date=2022-12-16&rft.pub=IEEE&rft.spage=1&rft.epage=5&rft_id=info:doi/10.1109%2FICARCE55724.2022.10046655&rft.externalDocID=10046655