A Competitive Swarm Optimized SVD-based Clutter Filter
Ultrafast ultrasound imaging has promoted long-term developments and wide applications in the field of blood flow imaging. The singular value decomposition (SVD)-based clutter filter for ultrafast ultrasound highly increases the sensitivity of resolving smaller blood vessels than the conventional cl...
Saved in:
Published in | 2023 IEEE International Ultrasonics Symposium (IUS) pp. 1 - 4 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
03.09.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Ultrafast ultrasound imaging has promoted long-term developments and wide applications in the field of blood flow imaging. The singular value decomposition (SVD)-based clutter filter for ultrafast ultrasound highly increases the sensitivity of resolving smaller blood vessels than the conventional clutter filters, thus enabling ultrasound microvessel imaging. Currently, most of the SVD clutter filters use two cutoffs and hard thresholding in the singular values to separate the subspaces of tissue, blood flow, and noise. However, there is no strict theoretical basis to prove that SVD can ideally separate the tissue, blood flow, and noise into three independent subspaces. In this paper, we propose to estimate the contributions of blood flow in each singular value through global optimization. Specifically, we design a new SVD clutter filter by using the competitive swarm optimization (CSO) to search for the counterparts of blood flow signals in each singular value, i.e., a CSO-SVD clutter filter is proposed. We validate the feasibility of our idea and the effectiveness of the CSO-SVD clutter filter on public in-vivo cerebral datasets acquired from rat brains. The experimental results demonstrate that our filter significantly improves the contrast-to-noise ratio (CNR) of ultrafast power Doppler imaging (uPDI) when compared with the state-of-the-art SVD-based clutter filters. |
---|---|
AbstractList | Ultrafast ultrasound imaging has promoted long-term developments and wide applications in the field of blood flow imaging. The singular value decomposition (SVD)-based clutter filter for ultrafast ultrasound highly increases the sensitivity of resolving smaller blood vessels than the conventional clutter filters, thus enabling ultrasound microvessel imaging. Currently, most of the SVD clutter filters use two cutoffs and hard thresholding in the singular values to separate the subspaces of tissue, blood flow, and noise. However, there is no strict theoretical basis to prove that SVD can ideally separate the tissue, blood flow, and noise into three independent subspaces. In this paper, we propose to estimate the contributions of blood flow in each singular value through global optimization. Specifically, we design a new SVD clutter filter by using the competitive swarm optimization (CSO) to search for the counterparts of blood flow signals in each singular value, i.e., a CSO-SVD clutter filter is proposed. We validate the feasibility of our idea and the effectiveness of the CSO-SVD clutter filter on public in-vivo cerebral datasets acquired from rat brains. The experimental results demonstrate that our filter significantly improves the contrast-to-noise ratio (CNR) of ultrafast power Doppler imaging (uPDI) when compared with the state-of-the-art SVD-based clutter filters. |
Author | Luo, Jianwen Luo, Xiongbiao Meng, Fengling Fang, Baohui Chen, Yinran |
Author_xml | – sequence: 1 givenname: Baohui surname: Fang fullname: Fang, Baohui email: fangbaohui@stu.xmu.edu.cn organization: Xiamen University,Department of Computer Science,Xiamen,China – sequence: 2 givenname: Fengling surname: Meng fullname: Meng, Fengling email: fengling@stu.xmu.edu.cn organization: Xiamen University,Department of Computer Science,Xiamen,China – sequence: 3 givenname: Yinran surname: Chen fullname: Chen, Yinran email: yinran_chen@xmu.edu.cn organization: Xiamen University,Department of Computer Science,Xiamen,China – sequence: 4 givenname: Jianwen surname: Luo fullname: Luo, Jianwen email: luo_jianwen@tsinghua.edu.cn organization: Tsinghua University,Department of Biomedical Engineering,BeiJing,China – sequence: 5 givenname: Xiongbiao surname: Luo fullname: Luo, Xiongbiao email: xbluo@xmu.edu.cn organization: Xiamen University,Department of Computer Science,Xiamen,China |
BookMark | eNo1j81Kw0AUhUdRsNa8gUheIHHu3Pldlmi1UOgi1m2ZMTcwkLQhGRV9egPq6jsHPg6ca3ZxPB2JsTvgJQB395t9rcCiKQUXWAJHrqWEM5Y54ywqjlJL5c7ZApy0hTLCXLFsmmKYTYHWCLtgepVXp36gFFP8oLz-9GOf74YU-_hNTV6_PhTBT3OquveUaMzXsZtxwy5b302U_XHJ9uvHl-q52O6eNtVqW0QAl4oQjDRaIIJolGq10G8Nd8I2bUtBuwbAOgzgufeGhLVzV8GSIYPceiNxyW5_dyMRHYYx9n78OvxfxR_xe0hM |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/IUS51837.2023.10306441 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library Online IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9798350346459 |
EISSN | 1948-5727 |
EndPage | 4 |
ExternalDocumentID | 10306441 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 10.13039/501100001809 – fundername: Natural Science Foundation of Fujian Province funderid: 10.13039/501100003392 |
GroupedDBID | 6IE 6IH 6IL 6IN ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP OCL RIE RIL RIO |
ID | FETCH-LOGICAL-i119t-bb747623312d55f626cd0928dffeb69d11893b1a0aa7e2881185b8e7e7308a743 |
IEDL.DBID | RIE |
IngestDate | Wed Jun 26 19:24:26 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i119t-bb747623312d55f626cd0928dffeb69d11893b1a0aa7e2881185b8e7e7308a743 |
PageCount | 4 |
ParticipantIDs | ieee_primary_10306441 |
PublicationCentury | 2000 |
PublicationDate | 2023-Sept.-3 |
PublicationDateYYYYMMDD | 2023-09-03 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-Sept.-3 day: 03 |
PublicationDecade | 2020 |
PublicationTitle | 2023 IEEE International Ultrasonics Symposium (IUS) |
PublicationTitleAbbrev | IUS |
PublicationYear | 2023 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssib030238728 ssib028086286 ssib048504734 |
Score | 1.8928051 |
Snippet | Ultrafast ultrasound imaging has promoted long-term developments and wide applications in the field of blood flow imaging. The singular value decomposition... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Clutter Clutter filtering competitive swarm optimization Doppler effect Particle swarm optimization power Doppler imaging Rats Sensitivity singular value decomposition Thresholding (Imaging) ultrafast ultrasound imaging Ultrasonic imaging |
Title | A Competitive Swarm Optimized SVD-based Clutter Filter |
URI | https://ieeexplore.ieee.org/document/10306441 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5uJ08qTvxNDl7TpU2yJEeZjik4hTnZbSTrKwzdD0aHsL_el2x1KAje2h5CX5P2-17zvvcRcgNeYdqRCla4DBMUnGHmpDLMCED088ZYHtTIT71WdyAfh2q4FatHLQwAxOIzSMJh3MvP5-NV-FXWDJZYAb9rpKat3Yi1qsWTmUDOd73QghmO0TtuLY3iUgu5VQmn3DYfBn2FK1onwUI8qQb_YbMSUaZzQHrV_W2KS96TVemT8fpX68Z_B3BIGjtBH335hqojsgezY9K6pe3ImmP5EO1_uuWUPuMnZDpZQ077b3csYFxO2x_RzZp2JmFrvUEGnfvXdpdtbRTYJE1tybzHlAFZjkizXKkCM5hxzm1m8qIA37I5phhW-NRx5zRkxuC58gY04MtvHDKME1KfzWdwSqhGOOegLICX0npuvSmER5biQLrCwRlphKBHi02njFEV7_kf1y_Ifnj2sWZLXJJ6uVzBFYJ86a_j5H4B_u2gqQ |
link.rule.ids | 310,311,783,787,792,793,799,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4UD3pSI8bf9uB1o1vbrT0alKACmgCGG2nZW0IUMGTEhL_e18Ikmph423ZY9vK6fd9b3_c-Qm7ASiw7Ih7kJsYCBTMcGCFVoDgg-lmlNHNq5HYnafbF40AO1mJ1r4UBAN98BqE79Hv52Wy0cL_Kas4Sy-H3NtlBYq2SlVyrXD6xcvR8Mw3N2eGodMOuhZJMpFysdcIR07WHflfimk5DZyIelrf_YbTicaaxTzrlE67aS97CRWHD0fLX8MZ_h3BAqhtJH335BqtDsgXTI5Lc0rrnzb6BiHY_zXxCn_EjMhkvIaPd17vAoVxG6-_ez5o2xm5zvUr6jftevRmsjRSCcRTpIrAWiwbkOTyKMylzrGFGGdOxyvIcbKIzLDI0t5FhxqQQK4Xn0ipIAV9_ZZBjHJPKdDaFE0JTBHQGUgNYIbRl2qqcW-QpBoTJDZySqgt6-LGalTEs4z374_o12W322q1h66HzdE72XB58Bxe_IJVivoBLhPzCXvlEfwGcOqP0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+IEEE+International+Ultrasonics+Symposium+%28IUS%29&rft.atitle=A+Competitive+Swarm+Optimized+SVD-based+Clutter+Filter&rft.au=Fang%2C+Baohui&rft.au=Meng%2C+Fengling&rft.au=Chen%2C+Yinran&rft.au=Luo%2C+Jianwen&rft.date=2023-09-03&rft.pub=IEEE&rft.eissn=1948-5727&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FIUS51837.2023.10306441&rft.externalDocID=10306441 |