A Competitive Swarm Optimized SVD-based Clutter Filter

Ultrafast ultrasound imaging has promoted long-term developments and wide applications in the field of blood flow imaging. The singular value decomposition (SVD)-based clutter filter for ultrafast ultrasound highly increases the sensitivity of resolving smaller blood vessels than the conventional cl...

Full description

Saved in:
Bibliographic Details
Published in2023 IEEE International Ultrasonics Symposium (IUS) pp. 1 - 4
Main Authors Fang, Baohui, Meng, Fengling, Chen, Yinran, Luo, Jianwen, Luo, Xiongbiao
Format Conference Proceeding
LanguageEnglish
Published IEEE 03.09.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ultrafast ultrasound imaging has promoted long-term developments and wide applications in the field of blood flow imaging. The singular value decomposition (SVD)-based clutter filter for ultrafast ultrasound highly increases the sensitivity of resolving smaller blood vessels than the conventional clutter filters, thus enabling ultrasound microvessel imaging. Currently, most of the SVD clutter filters use two cutoffs and hard thresholding in the singular values to separate the subspaces of tissue, blood flow, and noise. However, there is no strict theoretical basis to prove that SVD can ideally separate the tissue, blood flow, and noise into three independent subspaces. In this paper, we propose to estimate the contributions of blood flow in each singular value through global optimization. Specifically, we design a new SVD clutter filter by using the competitive swarm optimization (CSO) to search for the counterparts of blood flow signals in each singular value, i.e., a CSO-SVD clutter filter is proposed. We validate the feasibility of our idea and the effectiveness of the CSO-SVD clutter filter on public in-vivo cerebral datasets acquired from rat brains. The experimental results demonstrate that our filter significantly improves the contrast-to-noise ratio (CNR) of ultrafast power Doppler imaging (uPDI) when compared with the state-of-the-art SVD-based clutter filters.
AbstractList Ultrafast ultrasound imaging has promoted long-term developments and wide applications in the field of blood flow imaging. The singular value decomposition (SVD)-based clutter filter for ultrafast ultrasound highly increases the sensitivity of resolving smaller blood vessels than the conventional clutter filters, thus enabling ultrasound microvessel imaging. Currently, most of the SVD clutter filters use two cutoffs and hard thresholding in the singular values to separate the subspaces of tissue, blood flow, and noise. However, there is no strict theoretical basis to prove that SVD can ideally separate the tissue, blood flow, and noise into three independent subspaces. In this paper, we propose to estimate the contributions of blood flow in each singular value through global optimization. Specifically, we design a new SVD clutter filter by using the competitive swarm optimization (CSO) to search for the counterparts of blood flow signals in each singular value, i.e., a CSO-SVD clutter filter is proposed. We validate the feasibility of our idea and the effectiveness of the CSO-SVD clutter filter on public in-vivo cerebral datasets acquired from rat brains. The experimental results demonstrate that our filter significantly improves the contrast-to-noise ratio (CNR) of ultrafast power Doppler imaging (uPDI) when compared with the state-of-the-art SVD-based clutter filters.
Author Luo, Jianwen
Luo, Xiongbiao
Meng, Fengling
Fang, Baohui
Chen, Yinran
Author_xml – sequence: 1
  givenname: Baohui
  surname: Fang
  fullname: Fang, Baohui
  email: fangbaohui@stu.xmu.edu.cn
  organization: Xiamen University,Department of Computer Science,Xiamen,China
– sequence: 2
  givenname: Fengling
  surname: Meng
  fullname: Meng, Fengling
  email: fengling@stu.xmu.edu.cn
  organization: Xiamen University,Department of Computer Science,Xiamen,China
– sequence: 3
  givenname: Yinran
  surname: Chen
  fullname: Chen, Yinran
  email: yinran_chen@xmu.edu.cn
  organization: Xiamen University,Department of Computer Science,Xiamen,China
– sequence: 4
  givenname: Jianwen
  surname: Luo
  fullname: Luo, Jianwen
  email: luo_jianwen@tsinghua.edu.cn
  organization: Tsinghua University,Department of Biomedical Engineering,BeiJing,China
– sequence: 5
  givenname: Xiongbiao
  surname: Luo
  fullname: Luo, Xiongbiao
  email: xbluo@xmu.edu.cn
  organization: Xiamen University,Department of Computer Science,Xiamen,China
BookMark eNo1j81Kw0AUhUdRsNa8gUheIHHu3Pldlmi1UOgi1m2ZMTcwkLQhGRV9egPq6jsHPg6ca3ZxPB2JsTvgJQB395t9rcCiKQUXWAJHrqWEM5Y54ywqjlJL5c7ZApy0hTLCXLFsmmKYTYHWCLtgepVXp36gFFP8oLz-9GOf74YU-_hNTV6_PhTBT3OquveUaMzXsZtxwy5b302U_XHJ9uvHl-q52O6eNtVqW0QAl4oQjDRaIIJolGq10G8Nd8I2bUtBuwbAOgzgufeGhLVzV8GSIYPceiNxyW5_dyMRHYYx9n78OvxfxR_xe0hM
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/IUS51837.2023.10306441
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350346459
EISSN 1948-5727
EndPage 4
ExternalDocumentID 10306441
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 10.13039/501100001809
– fundername: Natural Science Foundation of Fujian Province
  funderid: 10.13039/501100003392
GroupedDBID 6IE
6IH
6IL
6IN
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i119t-bb747623312d55f626cd0928dffeb69d11893b1a0aa7e2881185b8e7e7308a743
IEDL.DBID RIE
IngestDate Wed Jun 26 19:24:26 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-bb747623312d55f626cd0928dffeb69d11893b1a0aa7e2881185b8e7e7308a743
PageCount 4
ParticipantIDs ieee_primary_10306441
PublicationCentury 2000
PublicationDate 2023-Sept.-3
PublicationDateYYYYMMDD 2023-09-03
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-Sept.-3
  day: 03
PublicationDecade 2020
PublicationTitle 2023 IEEE International Ultrasonics Symposium (IUS)
PublicationTitleAbbrev IUS
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssib030238728
ssib028086286
ssib048504734
Score 1.8928051
Snippet Ultrafast ultrasound imaging has promoted long-term developments and wide applications in the field of blood flow imaging. The singular value decomposition...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Clutter
Clutter filtering
competitive swarm optimization
Doppler effect
Particle swarm optimization
power Doppler imaging
Rats
Sensitivity
singular value decomposition
Thresholding (Imaging)
ultrafast ultrasound imaging
Ultrasonic imaging
Title A Competitive Swarm Optimized SVD-based Clutter Filter
URI https://ieeexplore.ieee.org/document/10306441
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA5uJ08qTvxNDl7TpU2yJEeZjik4hTnZbSTrKwzdD0aHsL_el2x1KAje2h5CX5P2-17zvvcRcgNeYdqRCla4DBMUnGHmpDLMCED088ZYHtTIT71WdyAfh2q4FatHLQwAxOIzSMJh3MvP5-NV-FXWDJZYAb9rpKat3Yi1qsWTmUDOd73QghmO0TtuLY3iUgu5VQmn3DYfBn2FK1onwUI8qQb_YbMSUaZzQHrV_W2KS96TVemT8fpX68Z_B3BIGjtBH335hqojsgezY9K6pe3ImmP5EO1_uuWUPuMnZDpZQ077b3csYFxO2x_RzZp2JmFrvUEGnfvXdpdtbRTYJE1tybzHlAFZjkizXKkCM5hxzm1m8qIA37I5phhW-NRx5zRkxuC58gY04MtvHDKME1KfzWdwSqhGOOegLICX0npuvSmER5biQLrCwRlphKBHi02njFEV7_kf1y_Ifnj2sWZLXJJ6uVzBFYJ86a_j5H4B_u2gqQ
link.rule.ids 310,311,783,787,792,793,799,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFG4UD3pSI8bf9uB1o1vbrT0alKACmgCGG2nZW0IUMGTEhL_e18Ikmph423ZY9vK6fd9b3_c-Qm7ASiw7Ih7kJsYCBTMcGCFVoDgg-lmlNHNq5HYnafbF40AO1mJ1r4UBAN98BqE79Hv52Wy0cL_Kas4Sy-H3NtlBYq2SlVyrXD6xcvR8Mw3N2eGodMOuhZJMpFysdcIR07WHflfimk5DZyIelrf_YbTicaaxTzrlE67aS97CRWHD0fLX8MZ_h3BAqhtJH335BqtDsgXTI5Lc0rrnzb6BiHY_zXxCn_EjMhkvIaPd17vAoVxG6-_ez5o2xm5zvUr6jftevRmsjRSCcRTpIrAWiwbkOTyKMylzrGFGGdOxyvIcbKIzLDI0t5FhxqQQK4Xn0ipIAV9_ZZBjHJPKdDaFE0JTBHQGUgNYIbRl2qqcW-QpBoTJDZySqgt6-LGalTEs4z374_o12W322q1h66HzdE72XB58Bxe_IJVivoBLhPzCXvlEfwGcOqP0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+IEEE+International+Ultrasonics+Symposium+%28IUS%29&rft.atitle=A+Competitive+Swarm+Optimized+SVD-based+Clutter+Filter&rft.au=Fang%2C+Baohui&rft.au=Meng%2C+Fengling&rft.au=Chen%2C+Yinran&rft.au=Luo%2C+Jianwen&rft.date=2023-09-03&rft.pub=IEEE&rft.eissn=1948-5727&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FIUS51837.2023.10306441&rft.externalDocID=10306441