Comparative Analysis on Machine Learning and One-Dimensional Convolutional Neural Network to Predict Surface Enhanced Raman Spectroscopy

Surface-enhanced Raman spectroscopy (SERS) established on machine learning (ML) techniques have been used in intelligence investigation, food safety, biological recognition, and material study. However, ML techniques typically require additional preprocessing or attribute engineering, and conducting...

Full description

Saved in:
Bibliographic Details
Published in2023 3rd International Conference on Computing and Information Technology (ICCIT) pp. 216 - 221
Main Authors Jamil, Nasrin Nadher, Khairi Kareem, Aythem
Format Conference Proceeding
LanguageEnglish
Published IEEE 13.09.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Surface-enhanced Raman spectroscopy (SERS) established on machine learning (ML) techniques have been used in intelligence investigation, food safety, biological recognition, and material study. However, ML techniques typically require additional preprocessing or attribute engineering, and conducting large data employing these techniques is problematic. Deep Learning (DL) techniques involve minimal input data by analyzing every probable attribute established in the network. Therefore, this study employed ML techniques. These are K-Nearest Neighbor (KNN), Naïve Bayes (NB) Support Vector Machine (SVM), and Decision Trees (DT). Then, the result is compared with a one-dimensional convolutional neural network structure (1D-CNN). In this research, we utilize Rhodamine 6G (R6G) as an objective molecule. The experimental results demonstrate the effectiveness of the 1D-CNN offered.
AbstractList Surface-enhanced Raman spectroscopy (SERS) established on machine learning (ML) techniques have been used in intelligence investigation, food safety, biological recognition, and material study. However, ML techniques typically require additional preprocessing or attribute engineering, and conducting large data employing these techniques is problematic. Deep Learning (DL) techniques involve minimal input data by analyzing every probable attribute established in the network. Therefore, this study employed ML techniques. These are K-Nearest Neighbor (KNN), Naïve Bayes (NB) Support Vector Machine (SVM), and Decision Trees (DT). Then, the result is compared with a one-dimensional convolutional neural network structure (1D-CNN). In this research, we utilize Rhodamine 6G (R6G) as an objective molecule. The experimental results demonstrate the effectiveness of the 1D-CNN offered.
Author Jamil, Nasrin Nadher
Khairi Kareem, Aythem
Author_xml – sequence: 1
  givenname: Nasrin Nadher
  surname: Jamil
  fullname: Jamil, Nasrin Nadher
  email: nasrin32jamil@gmail.com
  organization: General Directorate of Education in Anbar Governorate Ministry of Education,Dept. of Vocational Education,Hit,Iraq
– sequence: 2
  givenname: Aythem
  surname: Khairi Kareem
  fullname: Khairi Kareem, Aythem
  email: ayt19c1004@uoanbar.edu.iq
  organization: Ministry of Education,General Directorate of Education in Anbar,Dept. of Heet Education,Hit,Iraq,31007
BookMark eNo1kEtOwzAURY0EAyjdAQNvIMWfxImHVShQqVBEy7h6sV-oRWNHjlvUHbBsKj6jo3t1dAf3ipz74JEQytmEc6Zv53U9XxcVl2IimJATzkQpdc7OyFiXupIFk4LnJbskX3XoeoiQ3AHp1MPuOLiBBk-fwGydR7pAiN75dwre0qXH7M516AcXTi6tgz-E3T79pmfcxx-kzxA_aAr0JaJ1JtHVPrZgkM78FrxBS1-hA09XPZoUw2BCf7wmFy3sBhz_cUTe7mfr-jFbLB_m9XSROc51ykDYije2zSsFpWrzU1nksmxAYQNaKCu4UlIzIUwhCqUMouK6tcCxUWgLOSI3v7sOETd9dB3E4-b_IPkNqgFjGA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICCIT58132.2023.10273940
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE/IET Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350321470
9798350321487
EndPage 221
ExternalDocumentID 10273940
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-a2d81bdf486a76f41195437ba6eba926d216639022c52566cee619fda1eb6ed53
IEDL.DBID RIE
IngestDate Wed Oct 18 05:40:17 EDT 2023
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-a2d81bdf486a76f41195437ba6eba926d216639022c52566cee619fda1eb6ed53
PageCount 6
ParticipantIDs ieee_primary_10273940
PublicationCentury 2000
PublicationDate 2023-Sept.-13
PublicationDateYYYYMMDD 2023-09-13
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-Sept.-13
  day: 13
PublicationDecade 2020
PublicationTitle 2023 3rd International Conference on Computing and Information Technology (ICCIT)
PublicationTitleAbbrev ICCIT
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8985219
Snippet Surface-enhanced Raman spectroscopy (SERS) established on machine learning (ML) techniques have been used in intelligence investigation, food safety,...
SourceID ieee
SourceType Publisher
StartPage 216
SubjectTerms Convolutional Neural Network
Convolutional neural networks
Decision Tree
Feature extraction
Machine Learning
Naïve Bayes
Predictive models
Raman scattering
Safety
Support Vector Machine
Support vector machines
Training
Title Comparative Analysis on Machine Learning and One-Dimensional Convolutional Neural Network to Predict Surface Enhanced Raman Spectroscopy
URI https://ieeexplore.ieee.org/document/10273940
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFA26J59UnPhNHnxNtWuaLs91YxM2RTfY20iaGxWxHaMV9Bf4s71JW0VB8KkflN40SXvvbc45l5BzI7PEDS3jmnPG-2CZAshYEmsVciUhEY7vPJmK0ZxfL-JFQ1b3XBgA8OAzCNyuX8s3RVa5X2X4hqOzlRwz9M1Eypqs1aJzLuXFOE3Hs7iP-VXgioIH7eU_Cqd4vzHcJtPWYg0XeQ6qUgfZ-y8xxn83aYd0vyl69PbL-eySDcj3yEf6reVNW7kRWuR04iGTQBs11QeqckNvcmBXTty_FuageOfXZiLikVPt8BsPE6dlgebcok5J76u1VWh-kD96-AC9Uy8qp66Sfem0MYvVW5fMh4NZOmJNqQX2FIayZKpnMH41lveFSoTlXgguSrQSoJXsCdMLMTSR6PCzGIMkgU-HmZc1KgQtwMTRPunkRQ4HhGJMoJPIWPyUYvZhjQYdO5F7KzNj-6E4JF3XjctVraaxbHvw6I_zx2TLjabDaITRCemU6wpOMRAo9ZmfAJ8PO7cg
link.rule.ids 310,311,783,787,792,793,799,27939,55088
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dT4MwFG3MfNAnNc74bR98BWWUAs-4ZdNtGt2SvS0tvVVjhGUBE_0F_mxvC7hoYuITHwnc0hbuufTccwk5V3EamqF1mGTMYRFoRwCkThhI4TERQ8hNvvNozPtTdj0LZnWyus2FAQBLPgPX7Nq1fJWnpflVhm84OtuYYYS-HhhgUaVrNfycy_hikCSDSRBhhOWasuBuc8GP0inWc_S2yLixWRFGXtyykG768UuO8d-N2ibtVZIevft2PztkDbJd8pms1LxpIzhC84yOLGkSaK2n-khFpuhtBs6VkfevpDko3vmtnop4ZHQ77MYSxWmRozmzrFPQh3KpBZrvZk-WQEDvxavIqKllXxh1zHzx3ibTXneS9J262ILz7Hlx4YiOQgSrNIu4CLlmVgrOD6XgIEXc4arjITiJ0eWnAcIkjk-HsZdWwgPJQQX-HmlleQb7hCIqkKGvNH5MMf7QSoIMjMy9jlOlI48fkLbpxvmi0tOYNz14-Mf5M7LRn4yG8-FgfHNENs3IGsaG5x-TVrEs4QRhQSFP7WT4As4yum0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+3rd+International+Conference+on+Computing+and+Information+Technology+%28ICCIT%29&rft.atitle=Comparative+Analysis+on+Machine+Learning+and+One-Dimensional+Convolutional+Neural+Network+to+Predict+Surface+Enhanced+Raman+Spectroscopy&rft.au=Jamil%2C+Nasrin+Nadher&rft.au=Khairi+Kareem%2C+Aythem&rft.date=2023-09-13&rft.pub=IEEE&rft.spage=216&rft.epage=221&rft_id=info:doi/10.1109%2FICCIT58132.2023.10273940&rft.externalDocID=10273940