Comparative Analysis on Machine Learning and One-Dimensional Convolutional Neural Network to Predict Surface Enhanced Raman Spectroscopy
Surface-enhanced Raman spectroscopy (SERS) established on machine learning (ML) techniques have been used in intelligence investigation, food safety, biological recognition, and material study. However, ML techniques typically require additional preprocessing or attribute engineering, and conducting...
Saved in:
Published in | 2023 3rd International Conference on Computing and Information Technology (ICCIT) pp. 216 - 221 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
13.09.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Surface-enhanced Raman spectroscopy (SERS) established on machine learning (ML) techniques have been used in intelligence investigation, food safety, biological recognition, and material study. However, ML techniques typically require additional preprocessing or attribute engineering, and conducting large data employing these techniques is problematic. Deep Learning (DL) techniques involve minimal input data by analyzing every probable attribute established in the network. Therefore, this study employed ML techniques. These are K-Nearest Neighbor (KNN), Naïve Bayes (NB) Support Vector Machine (SVM), and Decision Trees (DT). Then, the result is compared with a one-dimensional convolutional neural network structure (1D-CNN). In this research, we utilize Rhodamine 6G (R6G) as an objective molecule. The experimental results demonstrate the effectiveness of the 1D-CNN offered. |
---|---|
AbstractList | Surface-enhanced Raman spectroscopy (SERS) established on machine learning (ML) techniques have been used in intelligence investigation, food safety, biological recognition, and material study. However, ML techniques typically require additional preprocessing or attribute engineering, and conducting large data employing these techniques is problematic. Deep Learning (DL) techniques involve minimal input data by analyzing every probable attribute established in the network. Therefore, this study employed ML techniques. These are K-Nearest Neighbor (KNN), Naïve Bayes (NB) Support Vector Machine (SVM), and Decision Trees (DT). Then, the result is compared with a one-dimensional convolutional neural network structure (1D-CNN). In this research, we utilize Rhodamine 6G (R6G) as an objective molecule. The experimental results demonstrate the effectiveness of the 1D-CNN offered. |
Author | Jamil, Nasrin Nadher Khairi Kareem, Aythem |
Author_xml | – sequence: 1 givenname: Nasrin Nadher surname: Jamil fullname: Jamil, Nasrin Nadher email: nasrin32jamil@gmail.com organization: General Directorate of Education in Anbar Governorate Ministry of Education,Dept. of Vocational Education,Hit,Iraq – sequence: 2 givenname: Aythem surname: Khairi Kareem fullname: Khairi Kareem, Aythem email: ayt19c1004@uoanbar.edu.iq organization: Ministry of Education,General Directorate of Education in Anbar,Dept. of Heet Education,Hit,Iraq,31007 |
BookMark | eNo1kEtOwzAURY0EAyjdAQNvIMWfxImHVShQqVBEy7h6sV-oRWNHjlvUHbBsKj6jo3t1dAf3ipz74JEQytmEc6Zv53U9XxcVl2IimJATzkQpdc7OyFiXupIFk4LnJbskX3XoeoiQ3AHp1MPuOLiBBk-fwGydR7pAiN75dwre0qXH7M516AcXTi6tgz-E3T79pmfcxx-kzxA_aAr0JaJ1JtHVPrZgkM78FrxBS1-hA09XPZoUw2BCf7wmFy3sBhz_cUTe7mfr-jFbLB_m9XSROc51ykDYije2zSsFpWrzU1nksmxAYQNaKCu4UlIzIUwhCqUMouK6tcCxUWgLOSI3v7sOETd9dB3E4-b_IPkNqgFjGA |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICCIT58132.2023.10273940 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE/IET Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9798350321470 9798350321487 |
EndPage | 221 |
ExternalDocumentID | 10273940 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i119t-a2d81bdf486a76f41195437ba6eba926d216639022c52566cee619fda1eb6ed53 |
IEDL.DBID | RIE |
IngestDate | Wed Oct 18 05:40:17 EDT 2023 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i119t-a2d81bdf486a76f41195437ba6eba926d216639022c52566cee619fda1eb6ed53 |
PageCount | 6 |
ParticipantIDs | ieee_primary_10273940 |
PublicationCentury | 2000 |
PublicationDate | 2023-Sept.-13 |
PublicationDateYYYYMMDD | 2023-09-13 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-Sept.-13 day: 13 |
PublicationDecade | 2020 |
PublicationTitle | 2023 3rd International Conference on Computing and Information Technology (ICCIT) |
PublicationTitleAbbrev | ICCIT |
PublicationYear | 2023 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.8985219 |
Snippet | Surface-enhanced Raman spectroscopy (SERS) established on machine learning (ML) techniques have been used in intelligence investigation, food safety,... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 216 |
SubjectTerms | Convolutional Neural Network Convolutional neural networks Decision Tree Feature extraction Machine Learning Naïve Bayes Predictive models Raman scattering Safety Support Vector Machine Support vector machines Training |
Title | Comparative Analysis on Machine Learning and One-Dimensional Convolutional Neural Network to Predict Surface Enhanced Raman Spectroscopy |
URI | https://ieeexplore.ieee.org/document/10273940 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFA26J59UnPhNHnxNtWuaLs91YxM2RTfY20iaGxWxHaMV9Bf4s71JW0VB8KkflN40SXvvbc45l5BzI7PEDS3jmnPG-2CZAshYEmsVciUhEY7vPJmK0ZxfL-JFQ1b3XBgA8OAzCNyuX8s3RVa5X2X4hqOzlRwz9M1Eypqs1aJzLuXFOE3Hs7iP-VXgioIH7eU_Cqd4vzHcJtPWYg0XeQ6qUgfZ-y8xxn83aYd0vyl69PbL-eySDcj3yEf6reVNW7kRWuR04iGTQBs11QeqckNvcmBXTty_FuageOfXZiLikVPt8BsPE6dlgebcok5J76u1VWh-kD96-AC9Uy8qp66Sfem0MYvVW5fMh4NZOmJNqQX2FIayZKpnMH41lveFSoTlXgguSrQSoJXsCdMLMTSR6PCzGIMkgU-HmZc1KgQtwMTRPunkRQ4HhGJMoJPIWPyUYvZhjQYdO5F7KzNj-6E4JF3XjctVraaxbHvw6I_zx2TLjabDaITRCemU6wpOMRAo9ZmfAJ8PO7cg |
link.rule.ids | 310,311,783,787,792,793,799,27939,55088 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dT4MwFG3MfNAnNc74bR98BWWUAs-4ZdNtGt2SvS0tvVVjhGUBE_0F_mxvC7hoYuITHwnc0hbuufTccwk5V3EamqF1mGTMYRFoRwCkThhI4TERQ8hNvvNozPtTdj0LZnWyus2FAQBLPgPX7Nq1fJWnpflVhm84OtuYYYS-HhhgUaVrNfycy_hikCSDSRBhhOWasuBuc8GP0inWc_S2yLixWRFGXtyykG768UuO8d-N2ibtVZIevft2PztkDbJd8pms1LxpIzhC84yOLGkSaK2n-khFpuhtBs6VkfevpDko3vmtnop4ZHQ77MYSxWmRozmzrFPQh3KpBZrvZk-WQEDvxavIqKllXxh1zHzx3ibTXneS9J262ILz7Hlx4YiOQgSrNIu4CLlmVgrOD6XgIEXc4arjITiJ0eWnAcIkjk-HsZdWwgPJQQX-HmlleQb7hCIqkKGvNH5MMf7QSoIMjMy9jlOlI48fkLbpxvmi0tOYNz14-Mf5M7LRn4yG8-FgfHNENs3IGsaG5x-TVrEs4QRhQSFP7WT4As4yum0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+3rd+International+Conference+on+Computing+and+Information+Technology+%28ICCIT%29&rft.atitle=Comparative+Analysis+on+Machine+Learning+and+One-Dimensional+Convolutional+Neural+Network+to+Predict+Surface+Enhanced+Raman+Spectroscopy&rft.au=Jamil%2C+Nasrin+Nadher&rft.au=Khairi+Kareem%2C+Aythem&rft.date=2023-09-13&rft.pub=IEEE&rft.spage=216&rft.epage=221&rft_id=info:doi/10.1109%2FICCIT58132.2023.10273940&rft.externalDocID=10273940 |