Shrink AutoEncoder for Federated Learning-based IoT Anomaly Detection
Federated Learning (FL)-based anomaly detection is a promising framework for Internet of Things (IoT) security. Due to the scarcity of abnormal data, unsupervised deep learning neural network models, such as variations of AutoEncoder (AE), are considered effective solutions for anomaly detection in...
Saved in:
Published in | 2022 9th NAFOSTED Conference on Information and Computer Science (NICS) pp. 383 - 388 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
31.10.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Federated Learning (FL)-based anomaly detection is a promising framework for Internet of Things (IoT) security. Due to the scarcity of abnormal data, unsupervised deep learning neural network models, such as variations of AutoEncoder (AE), are considered effective solutions for anomaly detection in IoT devices. These models construct low-dimensional representations of input data that are utilized for classification. Nevertheless, given the enormous number of IoT devices, their intrinsic heterogeneity, and the distributed nature of the FL training process, the latent representation of the local data is distributed randomly. The determination of the global anomaly score is thus no longer accurate. To address this issue, this work provides an effective FL-based IoT anomaly detection framework with novel AutoEncoder models, namely Federated Shrink AutoEncoder (FedSAE). The proposed model forces normal data of IoT devices to nearly the origin. Thus, a universal or global anomaly score can be determined accurately for all IoT devices. The extensive experiments on the N-BaIoT dataset indicate that FedSAE may reduce the false detection rate by 1.84% compared with that of the AE-based FL frameworks for the IoT anomaly detection problem. |
---|---|
AbstractList | Federated Learning (FL)-based anomaly detection is a promising framework for Internet of Things (IoT) security. Due to the scarcity of abnormal data, unsupervised deep learning neural network models, such as variations of AutoEncoder (AE), are considered effective solutions for anomaly detection in IoT devices. These models construct low-dimensional representations of input data that are utilized for classification. Nevertheless, given the enormous number of IoT devices, their intrinsic heterogeneity, and the distributed nature of the FL training process, the latent representation of the local data is distributed randomly. The determination of the global anomaly score is thus no longer accurate. To address this issue, this work provides an effective FL-based IoT anomaly detection framework with novel AutoEncoder models, namely Federated Shrink AutoEncoder (FedSAE). The proposed model forces normal data of IoT devices to nearly the origin. Thus, a universal or global anomaly score can be determined accurately for all IoT devices. The extensive experiments on the N-BaIoT dataset indicate that FedSAE may reduce the false detection rate by 1.84% compared with that of the AE-based FL frameworks for the IoT anomaly detection problem. |
Author | Nguyen, Quang Uy Tran, Tuan Phong Vu, Thai An Vu, Ly |
Author_xml | – sequence: 1 givenname: Thai An surname: Vu fullname: Vu, Thai An organization: Le Quy Don Technical University,Hanoi,Vietnam – sequence: 2 givenname: Tuan Phong surname: Tran fullname: Tran, Tuan Phong organization: Le Quy Don Technical University,Hanoi,Vietnam – sequence: 3 givenname: Ly surname: Vu fullname: Vu, Ly organization: Le Quy Don Technical University,Hanoi,Vietnam – sequence: 4 givenname: Quang Uy surname: Nguyen fullname: Nguyen, Quang Uy organization: Le Quy Don Technical University,Hanoi,Vietnam |
BookMark | eNo1j71OwzAYRY0EAy28ARJ-gQT_xI49RiGFSBEM6V459mewaG3kmqFvTxEwnXuWK50VuowpAkL3lNSUEv3wMvazkJqKmhHGakoI5U0rLtCKSika0TCmr9Ewv-cQP3D3VdIQbXKQsU8Zb-C8TAGHJzA5hvhWLeZ41jFtcRfTwexP-BEK2BJSvEFX3uyPcPvHNZo3w7Z_rqbXp7HvpipQqktlmPQEuGpBQ-uZsW6hSkqlvNaL-FGwDVdaC-dbK4FZQaRy3LfGOOBrdPf7GgBg95nDweTT7j-MfwPNj0lH |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/NICS56915.2022.10013475 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 1665454229 9781665454223 |
EndPage | 388 |
ExternalDocumentID | 10013475 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i119t-a26f0e387e9e7f2acdb186688f99b5acdbec438995df7c6e2c5068d3f7aade3 |
IEDL.DBID | RIE |
IngestDate | Thu Jan 18 11:12:52 EST 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i119t-a26f0e387e9e7f2acdb186688f99b5acdbec438995df7c6e2c5068d3f7aade3 |
PageCount | 6 |
ParticipantIDs | ieee_primary_10013475 |
PublicationCentury | 2000 |
PublicationDate | 2022-Oct.-31 |
PublicationDateYYYYMMDD | 2022-10-31 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-Oct.-31 day: 31 |
PublicationDecade | 2020 |
PublicationTitle | 2022 9th NAFOSTED Conference on Information and Computer Science (NICS) |
PublicationTitleAbbrev | NICS |
PublicationYear | 2022 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.8605129 |
Snippet | Federated Learning (FL)-based anomaly detection is a promising framework for Internet of Things (IoT) security. Due to the scarcity of abnormal data,... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 383 |
SubjectTerms | anomaly detection Computer architecture Data models Deep learning Distributed databases Federated learning IoT Neural networks Shrink AutoEncoder Training |
Title | Shrink AutoEncoder for Federated Learning-based IoT Anomaly Detection |
URI | https://ieeexplore.ieee.org/document/10013475 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8MgFCa6kyc1zvg7HLzSFQoUjmZu2UxcTDaT3RYKr2rU1iztQf96oe00mph4A0ICPALvPXjf9xC6lEw56wL5YOI44ZpyonTmCGVgdCxAcB6AwrczObnnN0ux7MDqDRYGAJrgM4hCsfnLd6Wtw1PZIPAFJTwV22g71boFa3UxWzTWg9l0OBdSU-HdPsaiTe8feVMatTHeRbPNgG20yHNUV1lkP35xMf57Rnuo_43Qw3dfumcfbUFxgEbzx7V3LfFVXZWjIoDV19jbpHgcCCO8Telwx6b6QILycnhaLrD3_1_Nyzu-hqqJyir6aD4eLYYT0qVJIE-U6ooYJvMYEpWChjRnxrossNgplWudiVAFG3Kca-Hy1EpgVsRSuSRPjXGQHKJeURZwhDA3NjfNtzxk_ihnyklvHFklwUtVGnqM-kECq7eWB2O1WfzJH-2naCdsRHvTn6Feta7h3KvwKrtotu4T2J6czw |
link.rule.ids | 310,311,783,787,792,793,799,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA86D3pSceK3OXht148kTY5jbmy6FWETdhtp8qqitlLag_71Jm2nKAjekhDIF8l7L-_9fg-hKxZwrbQlHww1cYjwicNFoh0_ACk8CpQQCxSexWx8T26WdNmC1WssDADUwWfg2mLty9e5quxXWc_yBYUkoptoyyjWnDVwrTZqy_dEL54M5pQJnxrDLwjcdf8fmVNqwTHaRfF6yCZe5NmtysRVH7_YGP89pz3U_cbo4bsv6bOPNiA7QMP5Y2GMS9yvynyYWbh6gY1WikeWMsJolRq3fKoPjhVfGk_yBe5n-at8ecfXUNZxWVkXzUfDxWDstIkSnCffF6UjA5Z6EPIIBERpIJVOLI8d56kQCbVVUDbLuaA6jRSDQFGPcR2mkZQawkPUyfIMjhAmUqWydsxDYi5zwjUz6pHiDMyuMukfo67dgdVbw4SxWi_-5I_2S7Q9Xsymq-kkvj1FO_ZQmnf_DHXKooJzI9DL5KI-xk8756Aa |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+9th+NAFOSTED+Conference+on+Information+and+Computer+Science+%28NICS%29&rft.atitle=Shrink+AutoEncoder+for+Federated+Learning-based+IoT+Anomaly+Detection&rft.au=Vu%2C+Thai+An&rft.au=Tran%2C+Tuan+Phong&rft.au=Vu%2C+Ly&rft.au=Nguyen%2C+Quang+Uy&rft.date=2022-10-31&rft.pub=IEEE&rft.spage=383&rft.epage=388&rft_id=info:doi/10.1109%2FNICS56915.2022.10013475&rft.externalDocID=10013475 |