Shrink AutoEncoder for Federated Learning-based IoT Anomaly Detection

Federated Learning (FL)-based anomaly detection is a promising framework for Internet of Things (IoT) security. Due to the scarcity of abnormal data, unsupervised deep learning neural network models, such as variations of AutoEncoder (AE), are considered effective solutions for anomaly detection in...

Full description

Saved in:
Bibliographic Details
Published in2022 9th NAFOSTED Conference on Information and Computer Science (NICS) pp. 383 - 388
Main Authors Vu, Thai An, Tran, Tuan Phong, Vu, Ly, Nguyen, Quang Uy
Format Conference Proceeding
LanguageEnglish
Published IEEE 31.10.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Federated Learning (FL)-based anomaly detection is a promising framework for Internet of Things (IoT) security. Due to the scarcity of abnormal data, unsupervised deep learning neural network models, such as variations of AutoEncoder (AE), are considered effective solutions for anomaly detection in IoT devices. These models construct low-dimensional representations of input data that are utilized for classification. Nevertheless, given the enormous number of IoT devices, their intrinsic heterogeneity, and the distributed nature of the FL training process, the latent representation of the local data is distributed randomly. The determination of the global anomaly score is thus no longer accurate. To address this issue, this work provides an effective FL-based IoT anomaly detection framework with novel AutoEncoder models, namely Federated Shrink AutoEncoder (FedSAE). The proposed model forces normal data of IoT devices to nearly the origin. Thus, a universal or global anomaly score can be determined accurately for all IoT devices. The extensive experiments on the N-BaIoT dataset indicate that FedSAE may reduce the false detection rate by 1.84% compared with that of the AE-based FL frameworks for the IoT anomaly detection problem.
AbstractList Federated Learning (FL)-based anomaly detection is a promising framework for Internet of Things (IoT) security. Due to the scarcity of abnormal data, unsupervised deep learning neural network models, such as variations of AutoEncoder (AE), are considered effective solutions for anomaly detection in IoT devices. These models construct low-dimensional representations of input data that are utilized for classification. Nevertheless, given the enormous number of IoT devices, their intrinsic heterogeneity, and the distributed nature of the FL training process, the latent representation of the local data is distributed randomly. The determination of the global anomaly score is thus no longer accurate. To address this issue, this work provides an effective FL-based IoT anomaly detection framework with novel AutoEncoder models, namely Federated Shrink AutoEncoder (FedSAE). The proposed model forces normal data of IoT devices to nearly the origin. Thus, a universal or global anomaly score can be determined accurately for all IoT devices. The extensive experiments on the N-BaIoT dataset indicate that FedSAE may reduce the false detection rate by 1.84% compared with that of the AE-based FL frameworks for the IoT anomaly detection problem.
Author Nguyen, Quang Uy
Tran, Tuan Phong
Vu, Thai An
Vu, Ly
Author_xml – sequence: 1
  givenname: Thai An
  surname: Vu
  fullname: Vu, Thai An
  organization: Le Quy Don Technical University,Hanoi,Vietnam
– sequence: 2
  givenname: Tuan Phong
  surname: Tran
  fullname: Tran, Tuan Phong
  organization: Le Quy Don Technical University,Hanoi,Vietnam
– sequence: 3
  givenname: Ly
  surname: Vu
  fullname: Vu, Ly
  organization: Le Quy Don Technical University,Hanoi,Vietnam
– sequence: 4
  givenname: Quang Uy
  surname: Nguyen
  fullname: Nguyen, Quang Uy
  organization: Le Quy Don Technical University,Hanoi,Vietnam
BookMark eNo1j71OwzAYRY0EAy28ARJ-gQT_xI49RiGFSBEM6V459mewaG3kmqFvTxEwnXuWK50VuowpAkL3lNSUEv3wMvazkJqKmhHGakoI5U0rLtCKSika0TCmr9Ewv-cQP3D3VdIQbXKQsU8Zb-C8TAGHJzA5hvhWLeZ41jFtcRfTwexP-BEK2BJSvEFX3uyPcPvHNZo3w7Z_rqbXp7HvpipQqktlmPQEuGpBQ-uZsW6hSkqlvNaL-FGwDVdaC-dbK4FZQaRy3LfGOOBrdPf7GgBg95nDweTT7j-MfwPNj0lH
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/NICS56915.2022.10013475
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1665454229
9781665454223
EndPage 388
ExternalDocumentID 10013475
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-a26f0e387e9e7f2acdb186688f99b5acdbec438995df7c6e2c5068d3f7aade3
IEDL.DBID RIE
IngestDate Thu Jan 18 11:12:52 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-a26f0e387e9e7f2acdb186688f99b5acdbec438995df7c6e2c5068d3f7aade3
PageCount 6
ParticipantIDs ieee_primary_10013475
PublicationCentury 2000
PublicationDate 2022-Oct.-31
PublicationDateYYYYMMDD 2022-10-31
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-Oct.-31
  day: 31
PublicationDecade 2020
PublicationTitle 2022 9th NAFOSTED Conference on Information and Computer Science (NICS)
PublicationTitleAbbrev NICS
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8605129
Snippet Federated Learning (FL)-based anomaly detection is a promising framework for Internet of Things (IoT) security. Due to the scarcity of abnormal data,...
SourceID ieee
SourceType Publisher
StartPage 383
SubjectTerms anomaly detection
Computer architecture
Data models
Deep learning
Distributed databases
Federated learning
IoT
Neural networks
Shrink AutoEncoder
Training
Title Shrink AutoEncoder for Federated Learning-based IoT Anomaly Detection
URI https://ieeexplore.ieee.org/document/10013475
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8MgFCa6kyc1zvg7HLzSFQoUjmZu2UxcTDaT3RYKr2rU1iztQf96oe00mph4A0ICPALvPXjf9xC6lEw56wL5YOI44ZpyonTmCGVgdCxAcB6AwrczObnnN0ux7MDqDRYGAJrgM4hCsfnLd6Wtw1PZIPAFJTwV22g71boFa3UxWzTWg9l0OBdSU-HdPsaiTe8feVMatTHeRbPNgG20yHNUV1lkP35xMf57Rnuo_43Qw3dfumcfbUFxgEbzx7V3LfFVXZWjIoDV19jbpHgcCCO8Telwx6b6QILycnhaLrD3_1_Nyzu-hqqJyir6aD4eLYYT0qVJIE-U6ooYJvMYEpWChjRnxrossNgplWudiVAFG3Kca-Hy1EpgVsRSuSRPjXGQHKJeURZwhDA3NjfNtzxk_ihnyklvHFklwUtVGnqM-kECq7eWB2O1WfzJH-2naCdsRHvTn6Feta7h3KvwKrtotu4T2J6czw
link.rule.ids 310,311,783,787,792,793,799,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA86D3pSceK3OXht148kTY5jbmy6FWETdhtp8qqitlLag_71Jm2nKAjekhDIF8l7L-_9fg-hKxZwrbQlHww1cYjwicNFoh0_ACk8CpQQCxSexWx8T26WdNmC1WssDADUwWfg2mLty9e5quxXWc_yBYUkoptoyyjWnDVwrTZqy_dEL54M5pQJnxrDLwjcdf8fmVNqwTHaRfF6yCZe5NmtysRVH7_YGP89pz3U_cbo4bsv6bOPNiA7QMP5Y2GMS9yvynyYWbh6gY1WikeWMsJolRq3fKoPjhVfGk_yBe5n-at8ecfXUNZxWVkXzUfDxWDstIkSnCffF6UjA5Z6EPIIBERpIJVOLI8d56kQCbVVUDbLuaA6jRSDQFGPcR2mkZQawkPUyfIMjhAmUqWydsxDYi5zwjUz6pHiDMyuMukfo67dgdVbw4SxWi_-5I_2S7Q9Xsymq-kkvj1FO_ZQmnf_DHXKooJzI9DL5KI-xk8756Aa
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+9th+NAFOSTED+Conference+on+Information+and+Computer+Science+%28NICS%29&rft.atitle=Shrink+AutoEncoder+for+Federated+Learning-based+IoT+Anomaly+Detection&rft.au=Vu%2C+Thai+An&rft.au=Tran%2C+Tuan+Phong&rft.au=Vu%2C+Ly&rft.au=Nguyen%2C+Quang+Uy&rft.date=2022-10-31&rft.pub=IEEE&rft.spage=383&rft.epage=388&rft_id=info:doi/10.1109%2FNICS56915.2022.10013475&rft.externalDocID=10013475