On the Use of Personalized Models for Blood Glucose Concentration Prediction

Patients with type-l diabetes need to constantly monitor blood glucose concentration (BGC) level to stay in a healthy range. Consumer devices for BGC monitoring can be integrated with machine and deep learning techniques so that glucose level can be forecast and promptly provided to the patient. Rec...

Full description

Saved in:
Bibliographic Details
Published inIEEE International Conference on Consumer Electronics-Berlin pp. 100 - 105
Main Authors Puccinelli, Niccolo, Piccoli, Flavio, Napoletano, Paolo
Format Conference Proceeding
LanguageEnglish
Published IEEE 03.09.2023
Subjects
Online AccessGet full text
ISSN2166-6822
DOI10.1109/ICCE-Berlin58801.2023.10375621

Cover

Loading…
Abstract Patients with type-l diabetes need to constantly monitor blood glucose concentration (BGC) level to stay in a healthy range. Consumer devices for BGC monitoring can be integrated with machine and deep learning techniques so that glucose level can be forecast and promptly provided to the patient. Recent advancements in the field suggest the use of a cus-tomization step based on each subject for blood concentration prediction. However, there is no comparison with other cus-tomization strategies and more importantly, there is no quan-titative analysis on the benefits of such a customization. In this paper: (1) we evaluate the impact of several pre-processing strategies on the performance; (2) we conduct a comparative analysis between 2 different customization methods and a general purpose strategy with no customization at all, and finally, (3) we propose a new personalization technique, called Threetask, that performs slightly better than other strategies on the majority of the patients, especially in the 60- and 90-minutes horizon. Experiments have been conducted on the OhioT1DM dataset which contains eight weeks of continuous monitoring of Blood Glucose Concentration from 12 subjects.
AbstractList Patients with type-l diabetes need to constantly monitor blood glucose concentration (BGC) level to stay in a healthy range. Consumer devices for BGC monitoring can be integrated with machine and deep learning techniques so that glucose level can be forecast and promptly provided to the patient. Recent advancements in the field suggest the use of a cus-tomization step based on each subject for blood concentration prediction. However, there is no comparison with other cus-tomization strategies and more importantly, there is no quan-titative analysis on the benefits of such a customization. In this paper: (1) we evaluate the impact of several pre-processing strategies on the performance; (2) we conduct a comparative analysis between 2 different customization methods and a general purpose strategy with no customization at all, and finally, (3) we propose a new personalization technique, called Threetask, that performs slightly better than other strategies on the majority of the patients, especially in the 60- and 90-minutes horizon. Experiments have been conducted on the OhioT1DM dataset which contains eight weeks of continuous monitoring of Blood Glucose Concentration from 12 subjects.
Author Piccoli, Flavio
Napoletano, Paolo
Puccinelli, Niccolo
Author_xml – sequence: 1
  givenname: Niccolo
  surname: Puccinelli
  fullname: Puccinelli, Niccolo
  email: n.puccinelli@campus.unimib.it
  organization: University of Milano-Bicocca,Milan,Italy
– sequence: 2
  givenname: Flavio
  surname: Piccoli
  fullname: Piccoli, Flavio
  email: flavio.piccoli@unimib.it
  organization: University of Milano-Bicocca,Milan,Italy
– sequence: 3
  givenname: Paolo
  surname: Napoletano
  fullname: Napoletano, Paolo
  email: paolo.napoletano@unimib.it
  organization: University of Milano-Bicocca,Milan,Italy
BookMark eNo1kLFOwzAURQ0CiVLyBwye2BKe7dqxRxqVUqmoHehcOfazMAo2csIAXw8ImO4Zjs5wL8lZygkJuWHQMAbmdtN1q3qJZYhJag2s4cBFw0C0UnF2QirTGi0kCL5gEk7JjDOlaqU5vyDVOL4AAAMtpTEzst0lOj0jPYxIc6B7LGNOdoif6Olj9jiMNORCl0POnq6Hd5e_xS4nh2kqdoo50X1BH90PXpHzYIcRq7-dk8P96ql7qLe79aa729aRMTPVJrQSjOYOgxFuERZ97w1wZNI6AUIE5Z0H7IXslVXKaeOsFE6i5R58CGJOrn-7ERGPbyW-2vJx_D9AfAEN6FTX
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICCE-Berlin58801.2023.10375621
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9798350324150
EISSN 2166-6822
EndPage 105
ExternalDocumentID 10375621
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i119t-9f750982cef93c4f4bbd902e15ac3033f6dcd0eb35b6a66c89ca53c5ea2d0dff3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:29:57 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-9f750982cef93c4f4bbd902e15ac3033f6dcd0eb35b6a66c89ca53c5ea2d0dff3
PageCount 6
ParticipantIDs ieee_primary_10375621
PublicationCentury 2000
PublicationDate 2023-Sept.-3
PublicationDateYYYYMMDD 2023-09-03
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-Sept.-3
  day: 03
PublicationDecade 2020
PublicationTitle IEEE International Conference on Consumer Electronics-Berlin
PublicationTitleAbbrev ICCE-BERLIN
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001085599
Score 1.845758
Snippet Patients with type-l diabetes need to constantly monitor blood glucose concentration (BGC) level to stay in a healthy range. Consumer devices for BGC...
SourceID ieee
SourceType Publisher
StartPage 100
SubjectTerms Adaptation models
Blood
Blood Glucose Concentration estimation
Deep learning
Diabetes
Diabetes of Type 1
Glucose
Logic gates
Predictive models
Title On the Use of Personalized Models for Blood Glucose Concentration Prediction
URI https://ieeexplore.ieee.org/document/10375621
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8MwGA66g-jFr4nf5CDe2rVNmjZXy-YUmTs42G3kE0Tphusu-_W-SVunguAt5JCGJPR9n-R5nhehG6XiyEoCMFX6EmaWBoCz8iDjWmaZlZoYT5AdseGEPk7TaSNW91oYY4wnn5nQNf1bvp6rlbsq6zlNG8RrADvbcM5qsdbmQsUxrjjfQbeNj2bvoSj6Qe0alcIxdWgwIWE7yI9yKj6aDPbRqJ1HTSJ5C1eVDNX6l0Xjvyd6gLob4R4ef4WkQ7RlyiO0981z8Bg9PZcYkj48WRo8t3jcJuNro7ErjPa-xJDH4jtHaMf3NaEdF07cWDYOu_AF97rjml00GfRfimHQlFQIXuOYVwG3LkPIE2UsJ4paKqXmUWLiVCgIZsQyrXQEADuVTDCmcq5ESlRqRKIjbS05QZ1yXppThGmWK8nhF2EJpwzyLCWEIFpwZqxUOT1DXbcws0XtmjFr1-T8j_4LtOv2x_O3yCXqVB8rcwUBv5LXfqM_AQIrq18
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwFHxCRWK5sBWx4wPiljSNncVXopYWSumhlXqrvEoIlCKaXvr12E5CAQmJm-WDY9lW5j17Zh7AjRDtQHNs0lTuSphp4pk8K_USKnmSaC6xcgTZYdybkIdpNK3E6k4Lo5Ry5DPl26Z7y5dzsbRXZS2raTN4bZKdTQP8JCrlWusrFcu5onQLbisnzVY_yzpe6RsVmYNq88EQ-_UwPwqqODzp7sGwnklJI3n1lwX3xeqXSeO_p7oPzbV0D42-QOkANlR-CLvfXAePYPCcIxP2oclCoblGozocXymJbGm0twUykSy6s5R2dF9S2lFm5Y155bFrvmDfd2yzCZNuZ5z1vKqogvfSbtPCo9rGCGkolKZYEE04lzQIVTtiwsAZ1rEUMjApdsRjFscipYJFWESKhTKQWuNjaOTzXJ0AIkkqODU_CY0piU2kJRhjWDIaK81FSk6haRdm9l76ZszqNTn7o_8atnvjp8Fs0B8-nsOO3SvH5sIX0Cg-lurSwH_Br9ymfwIqKK6s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+International+Conference+on+Consumer+Electronics-Berlin&rft.atitle=On+the+Use+of+Personalized+Models+for+Blood+Glucose+Concentration+Prediction&rft.au=Puccinelli%2C+Niccolo&rft.au=Piccoli%2C+Flavio&rft.au=Napoletano%2C+Paolo&rft.date=2023-09-03&rft.pub=IEEE&rft.eissn=2166-6822&rft.spage=100&rft.epage=105&rft_id=info:doi/10.1109%2FICCE-Berlin58801.2023.10375621&rft.externalDocID=10375621