On the Use of Personalized Models for Blood Glucose Concentration Prediction
Patients with type-l diabetes need to constantly monitor blood glucose concentration (BGC) level to stay in a healthy range. Consumer devices for BGC monitoring can be integrated with machine and deep learning techniques so that glucose level can be forecast and promptly provided to the patient. Rec...
Saved in:
Published in | IEEE International Conference on Consumer Electronics-Berlin pp. 100 - 105 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
03.09.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2166-6822 |
DOI | 10.1109/ICCE-Berlin58801.2023.10375621 |
Cover
Loading…
Abstract | Patients with type-l diabetes need to constantly monitor blood glucose concentration (BGC) level to stay in a healthy range. Consumer devices for BGC monitoring can be integrated with machine and deep learning techniques so that glucose level can be forecast and promptly provided to the patient. Recent advancements in the field suggest the use of a cus-tomization step based on each subject for blood concentration prediction. However, there is no comparison with other cus-tomization strategies and more importantly, there is no quan-titative analysis on the benefits of such a customization. In this paper: (1) we evaluate the impact of several pre-processing strategies on the performance; (2) we conduct a comparative analysis between 2 different customization methods and a general purpose strategy with no customization at all, and finally, (3) we propose a new personalization technique, called Threetask, that performs slightly better than other strategies on the majority of the patients, especially in the 60- and 90-minutes horizon. Experiments have been conducted on the OhioT1DM dataset which contains eight weeks of continuous monitoring of Blood Glucose Concentration from 12 subjects. |
---|---|
AbstractList | Patients with type-l diabetes need to constantly monitor blood glucose concentration (BGC) level to stay in a healthy range. Consumer devices for BGC monitoring can be integrated with machine and deep learning techniques so that glucose level can be forecast and promptly provided to the patient. Recent advancements in the field suggest the use of a cus-tomization step based on each subject for blood concentration prediction. However, there is no comparison with other cus-tomization strategies and more importantly, there is no quan-titative analysis on the benefits of such a customization. In this paper: (1) we evaluate the impact of several pre-processing strategies on the performance; (2) we conduct a comparative analysis between 2 different customization methods and a general purpose strategy with no customization at all, and finally, (3) we propose a new personalization technique, called Threetask, that performs slightly better than other strategies on the majority of the patients, especially in the 60- and 90-minutes horizon. Experiments have been conducted on the OhioT1DM dataset which contains eight weeks of continuous monitoring of Blood Glucose Concentration from 12 subjects. |
Author | Piccoli, Flavio Napoletano, Paolo Puccinelli, Niccolo |
Author_xml | – sequence: 1 givenname: Niccolo surname: Puccinelli fullname: Puccinelli, Niccolo email: n.puccinelli@campus.unimib.it organization: University of Milano-Bicocca,Milan,Italy – sequence: 2 givenname: Flavio surname: Piccoli fullname: Piccoli, Flavio email: flavio.piccoli@unimib.it organization: University of Milano-Bicocca,Milan,Italy – sequence: 3 givenname: Paolo surname: Napoletano fullname: Napoletano, Paolo email: paolo.napoletano@unimib.it organization: University of Milano-Bicocca,Milan,Italy |
BookMark | eNo1kLFOwzAURQ0CiVLyBwye2BKe7dqxRxqVUqmoHehcOfazMAo2csIAXw8ImO4Zjs5wL8lZygkJuWHQMAbmdtN1q3qJZYhJag2s4cBFw0C0UnF2QirTGi0kCL5gEk7JjDOlaqU5vyDVOL4AAAMtpTEzst0lOj0jPYxIc6B7LGNOdoif6Olj9jiMNORCl0POnq6Hd5e_xS4nh2kqdoo50X1BH90PXpHzYIcRq7-dk8P96ql7qLe79aa729aRMTPVJrQSjOYOgxFuERZ97w1wZNI6AUIE5Z0H7IXslVXKaeOsFE6i5R58CGJOrn-7ERGPbyW-2vJx_D9AfAEN6FTX |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICCE-Berlin58801.2023.10375621 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 9798350324150 |
EISSN | 2166-6822 |
EndPage | 105 |
ExternalDocumentID | 10375621 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IK 6IL 6IN AAJGR AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL |
ID | FETCH-LOGICAL-i119t-9f750982cef93c4f4bbd902e15ac3033f6dcd0eb35b6a66c89ca53c5ea2d0dff3 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:29:57 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i119t-9f750982cef93c4f4bbd902e15ac3033f6dcd0eb35b6a66c89ca53c5ea2d0dff3 |
PageCount | 6 |
ParticipantIDs | ieee_primary_10375621 |
PublicationCentury | 2000 |
PublicationDate | 2023-Sept.-3 |
PublicationDateYYYYMMDD | 2023-09-03 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-Sept.-3 day: 03 |
PublicationDecade | 2020 |
PublicationTitle | IEEE International Conference on Consumer Electronics-Berlin |
PublicationTitleAbbrev | ICCE-BERLIN |
PublicationYear | 2023 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0001085599 |
Score | 1.845758 |
Snippet | Patients with type-l diabetes need to constantly monitor blood glucose concentration (BGC) level to stay in a healthy range. Consumer devices for BGC... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 100 |
SubjectTerms | Adaptation models Blood Blood Glucose Concentration estimation Deep learning Diabetes Diabetes of Type 1 Glucose Logic gates Predictive models |
Title | On the Use of Personalized Models for Blood Glucose Concentration Prediction |
URI | https://ieeexplore.ieee.org/document/10375621 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8MwGA66g-jFr4nf5CDe2rVNmjZXy-YUmTs42G3kE0Tphusu-_W-SVunguAt5JCGJPR9n-R5nhehG6XiyEoCMFX6EmaWBoCz8iDjWmaZlZoYT5AdseGEPk7TaSNW91oYY4wnn5nQNf1bvp6rlbsq6zlNG8RrADvbcM5qsdbmQsUxrjjfQbeNj2bvoSj6Qe0alcIxdWgwIWE7yI9yKj6aDPbRqJ1HTSJ5C1eVDNX6l0Xjvyd6gLob4R4ef4WkQ7RlyiO0981z8Bg9PZcYkj48WRo8t3jcJuNro7ErjPa-xJDH4jtHaMf3NaEdF07cWDYOu_AF97rjml00GfRfimHQlFQIXuOYVwG3LkPIE2UsJ4paKqXmUWLiVCgIZsQyrXQEADuVTDCmcq5ESlRqRKIjbS05QZ1yXppThGmWK8nhF2EJpwzyLCWEIFpwZqxUOT1DXbcws0XtmjFr1-T8j_4LtOv2x_O3yCXqVB8rcwUBv5LXfqM_AQIrq18 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwFHxCRWK5sBWx4wPiljSNncVXopYWSumhlXqrvEoIlCKaXvr12E5CAQmJm-WDY9lW5j17Zh7AjRDtQHNs0lTuSphp4pk8K_USKnmSaC6xcgTZYdybkIdpNK3E6k4Lo5Ry5DPl26Z7y5dzsbRXZS2raTN4bZKdTQP8JCrlWusrFcu5onQLbisnzVY_yzpe6RsVmYNq88EQ-_UwPwqqODzp7sGwnklJI3n1lwX3xeqXSeO_p7oPzbV0D42-QOkANlR-CLvfXAePYPCcIxP2oclCoblGozocXymJbGm0twUykSy6s5R2dF9S2lFm5Y155bFrvmDfd2yzCZNuZ5z1vKqogvfSbtPCo9rGCGkolKZYEE04lzQIVTtiwsAZ1rEUMjApdsRjFscipYJFWESKhTKQWuNjaOTzXJ0AIkkqODU_CY0piU2kJRhjWDIaK81FSk6haRdm9l76ZszqNTn7o_8atnvjp8Fs0B8-nsOO3SvH5sIX0Cg-lurSwH_Br9ymfwIqKK6s |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=IEEE+International+Conference+on+Consumer+Electronics-Berlin&rft.atitle=On+the+Use+of+Personalized+Models+for+Blood+Glucose+Concentration+Prediction&rft.au=Puccinelli%2C+Niccolo&rft.au=Piccoli%2C+Flavio&rft.au=Napoletano%2C+Paolo&rft.date=2023-09-03&rft.pub=IEEE&rft.eissn=2166-6822&rft.spage=100&rft.epage=105&rft_id=info:doi/10.1109%2FICCE-Berlin58801.2023.10375621&rft.externalDocID=10375621 |