Multistream Dilated Convolutional Feature Fusion Neural Network for SSVEP Classification

Based on steady-state visual evoked potentials (SSVEP), a neuroelectric phenomenon where the brain's electrical signals respond to specific frequency stimuli, which holds significant application value. Due to signal noise and individual differences, achieving accurate SSVEP classification remai...

Full description

Saved in:
Bibliographic Details
Published in2023 5th International Conference on Frontiers Technology of Information and Computer (ICFTIC) pp. 1044 - 1047
Main Authors Li, Xiujun, Zhang, Yongzheng, Wu, Yan, Li, Qi
Format Conference Proceeding
LanguageEnglish
Published IEEE 17.11.2023
Subjects
Online AccessGet full text
DOI10.1109/ICFTIC59930.2023.10456289

Cover

Loading…
Abstract Based on steady-state visual evoked potentials (SSVEP), a neuroelectric phenomenon where the brain's electrical signals respond to specific frequency stimuli, which holds significant application value. Due to signal noise and individual differences, achieving accurate SSVEP classification remains highly challenging. To address these challenges, we propose a multi-stream atrous convolutional feature fusion convolutional neural network (MACNN) model. The model adopts a parallel structure with multiple streams of atrous convolution for feature fusion. Each parallel convolution stream utilizes different dilation rates, sharing weights across various streams, and incorporates a feature fusion module, allowing the model to leverage information from multiple feature maps. Finally, an attention mechanism is introduced to adaptively emphasize critical feature channels, thereby enhancing the discriminative power of classification. Results from data involving 35 subjects indicate that, with a 1 -second data length, the average accuracy and information transfer rate increase to 79.94% and 141.57 bits/min, respectively. Consequently, the proposed method holds significant importance in the research of SSVEP signal classification.
AbstractList Based on steady-state visual evoked potentials (SSVEP), a neuroelectric phenomenon where the brain's electrical signals respond to specific frequency stimuli, which holds significant application value. Due to signal noise and individual differences, achieving accurate SSVEP classification remains highly challenging. To address these challenges, we propose a multi-stream atrous convolutional feature fusion convolutional neural network (MACNN) model. The model adopts a parallel structure with multiple streams of atrous convolution for feature fusion. Each parallel convolution stream utilizes different dilation rates, sharing weights across various streams, and incorporates a feature fusion module, allowing the model to leverage information from multiple feature maps. Finally, an attention mechanism is introduced to adaptively emphasize critical feature channels, thereby enhancing the discriminative power of classification. Results from data involving 35 subjects indicate that, with a 1 -second data length, the average accuracy and information transfer rate increase to 79.94% and 141.57 bits/min, respectively. Consequently, the proposed method holds significant importance in the research of SSVEP signal classification.
Author Li, Xiujun
Zhang, Yongzheng
Wu, Yan
Li, Qi
Author_xml – sequence: 1
  givenname: Xiujun
  surname: Li
  fullname: Li, Xiujun
  email: lixiujun@cust.edu.cn
  organization: Changchun University of Science and Technology,College of Computer Science and Technology,Changchun,Jilin,China
– sequence: 2
  givenname: Yongzheng
  surname: Zhang
  fullname: Zhang, Yongzheng
  email: 2938937371@qq.com
  organization: Changchun University of Science and Technology,College of Computer Science and Technology,Changchun,Jilin,China
– sequence: 3
  givenname: Yan
  surname: Wu
  fullname: Wu, Yan
  email: wuyan@cust.edu.cn
  organization: Changchun University of Science and Technology,College of Computer Science and Technology,Changchun,Jilin,China
– sequence: 4
  givenname: Qi
  surname: Li
  fullname: Li, Qi
  email: liqi@cust.edu.cn
  organization: Changchun University of Science and Technology,College of Computer Science and Technology,Changchun,Jilin,China
BookMark eNo1j9FKwzAUhiPohc69gRfxAVqTnqTtuZS6usGcwqZ4N9L0FIJZK2mq-PZO1KsPPvh--C_YaT_0xNi1FKmUAm9WVb1bVRoRRJqJDFIplM6zEk_YHAssQQsQKECds9eHyUc3xkDmwO-cN5FaXg39x-Cn6IbeeF6TiVMgXk_jUfANTeFoNxQ_h_DGuyHw7fZl8cQrb8bRdc6an_CSnXXGjzT_44w914tdtUzWj_er6nadOCkxJmhRWciVbLMCVIaYy9xgU2BjlSm6EgpojTTadk1BWktpm5aggRKssFo1MGNXv7uOiPbvwR1M-Nr_H4Zvkk1RnA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICFTIC59930.2023.10456289
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350309034
EndPage 1047
ExternalDocumentID 10456289
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-9c94c3641d2734299616a9b79bc4a7f8373da1a5cfb7e5511cbde3b383c0c54b3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:12:50 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-9c94c3641d2734299616a9b79bc4a7f8373da1a5cfb7e5511cbde3b383c0c54b3
PageCount 4
ParticipantIDs ieee_primary_10456289
PublicationCentury 2000
PublicationDate 2023-Nov.-17
PublicationDateYYYYMMDD 2023-11-17
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-Nov.-17
  day: 17
PublicationDecade 2020
PublicationTitle 2023 5th International Conference on Frontiers Technology of Information and Computer (ICFTIC)
PublicationTitleAbbrev ICFTIC
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8537678
Snippet Based on steady-state visual evoked potentials (SSVEP), a neuroelectric phenomenon where the brain's electrical signals respond to specific frequency stimuli,...
SourceID ieee
SourceType Publisher
StartPage 1044
SubjectTerms Adaptation models
attention mechanism
Brain modeling
Convolution
Feature extraction
feature fusion
multi-stream atrous convolution
ssvep classification
Target recognition
Vectors
Visualization
Title Multistream Dilated Convolutional Feature Fusion Neural Network for SSVEP Classification
URI https://ieeexplore.ieee.org/document/10456289
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFA1uD-KTihO_ieBrakOSZnmeK5vgGGyTvY18FYZzk9H64K_3Ju0UBcG3ElpSchvOPek95yJ0l8qCSyktMcILwm1GSZcxTawDpu2F0EwFcfLTKBvM-ONczBuxetTCeO9j8ZlPwmX8l-82tgpHZbDDQ77eVS3UAuZWi7X20W3jm3k_7OXTYU8A4qZJ6Aqe7O7_0TklAkd-iEa7Ket6kZekKk1iP365Mf77nY5Q51ujh8df6HOM9vz6BM2jnjboP_QrfliuIJF0GB54bz4wvcIh56u2HudVOCfDwZwDRkd1NTiGFBZPJs_9MY7dMkMdUQxdB83y_rQ3IE3vBLKkVJVEWcUtyzh1wb8GMCejmVZGKmO5lgXQUuY01cIWRkJIKLXGeWaAr9rUCm7YKWqvN2t_hrBgzhSs0BLYGTcmVU6kBWcuWA12IZ07R52wLIu32h5jsVuRiz_GL9FBiE4Q9FF5hdrltvLXgOyluYkR_QRs06Sq
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFA06QX1SceK3EXxNbUjSLM9zZdOtDLbJ3ka-CsO5yWh98NebpJ2iIPgWAqElt-Wcm9xzLgB3Mc8p51wjxSxDVCcYtQiRSBuXaVvGJBFenDzIku6EPk7ZtBarBy2MtTYUn9nID8Ndvlnp0h-VuT_c8_WW2AY7DvgZruRau-C2ds6877XTca_NHObGke8LHm1W_OidEqAjPQDZ5qFVxchLVBYq0h-__Bj__VaHoPmt0oPDL_w5Alt2eQymQVHrFSDyFT7MF45KGugWvNefmFxAz_rKtYVp6U_KoLfncLNZVQ8OHYmFo9FzZwhDv0xfSRSC1wSTtDNud1HdPQHNMRYFElpQTRKKjXewcaiT4EQKxYXSVPLcJabESCyZzhV3QcFYK2OJchmrjjWjipyAxnK1tKcAMmJUTnLJXX5GlYqFYXFOifFmgy1H6M5A02_L7K0yyJhtduT8j_kbsNcdD_qzfi97ugD7PlJe3of5JWgU69JeOZwv1HWI7iczfqfz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+5th+International+Conference+on+Frontiers+Technology+of+Information+and+Computer+%28ICFTIC%29&rft.atitle=Multistream+Dilated+Convolutional+Feature+Fusion+Neural+Network+for+SSVEP+Classification&rft.au=Li%2C+Xiujun&rft.au=Zhang%2C+Yongzheng&rft.au=Wu%2C+Yan&rft.au=Li%2C+Qi&rft.date=2023-11-17&rft.pub=IEEE&rft.spage=1044&rft.epage=1047&rft_id=info:doi/10.1109%2FICFTIC59930.2023.10456289&rft.externalDocID=10456289