Multistream Dilated Convolutional Feature Fusion Neural Network for SSVEP Classification
Based on steady-state visual evoked potentials (SSVEP), a neuroelectric phenomenon where the brain's electrical signals respond to specific frequency stimuli, which holds significant application value. Due to signal noise and individual differences, achieving accurate SSVEP classification remai...
Saved in:
Published in | 2023 5th International Conference on Frontiers Technology of Information and Computer (ICFTIC) pp. 1044 - 1047 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
17.11.2023
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/ICFTIC59930.2023.10456289 |
Cover
Loading…
Abstract | Based on steady-state visual evoked potentials (SSVEP), a neuroelectric phenomenon where the brain's electrical signals respond to specific frequency stimuli, which holds significant application value. Due to signal noise and individual differences, achieving accurate SSVEP classification remains highly challenging. To address these challenges, we propose a multi-stream atrous convolutional feature fusion convolutional neural network (MACNN) model. The model adopts a parallel structure with multiple streams of atrous convolution for feature fusion. Each parallel convolution stream utilizes different dilation rates, sharing weights across various streams, and incorporates a feature fusion module, allowing the model to leverage information from multiple feature maps. Finally, an attention mechanism is introduced to adaptively emphasize critical feature channels, thereby enhancing the discriminative power of classification. Results from data involving 35 subjects indicate that, with a 1 -second data length, the average accuracy and information transfer rate increase to 79.94% and 141.57 bits/min, respectively. Consequently, the proposed method holds significant importance in the research of SSVEP signal classification. |
---|---|
AbstractList | Based on steady-state visual evoked potentials (SSVEP), a neuroelectric phenomenon where the brain's electrical signals respond to specific frequency stimuli, which holds significant application value. Due to signal noise and individual differences, achieving accurate SSVEP classification remains highly challenging. To address these challenges, we propose a multi-stream atrous convolutional feature fusion convolutional neural network (MACNN) model. The model adopts a parallel structure with multiple streams of atrous convolution for feature fusion. Each parallel convolution stream utilizes different dilation rates, sharing weights across various streams, and incorporates a feature fusion module, allowing the model to leverage information from multiple feature maps. Finally, an attention mechanism is introduced to adaptively emphasize critical feature channels, thereby enhancing the discriminative power of classification. Results from data involving 35 subjects indicate that, with a 1 -second data length, the average accuracy and information transfer rate increase to 79.94% and 141.57 bits/min, respectively. Consequently, the proposed method holds significant importance in the research of SSVEP signal classification. |
Author | Li, Xiujun Zhang, Yongzheng Wu, Yan Li, Qi |
Author_xml | – sequence: 1 givenname: Xiujun surname: Li fullname: Li, Xiujun email: lixiujun@cust.edu.cn organization: Changchun University of Science and Technology,College of Computer Science and Technology,Changchun,Jilin,China – sequence: 2 givenname: Yongzheng surname: Zhang fullname: Zhang, Yongzheng email: 2938937371@qq.com organization: Changchun University of Science and Technology,College of Computer Science and Technology,Changchun,Jilin,China – sequence: 3 givenname: Yan surname: Wu fullname: Wu, Yan email: wuyan@cust.edu.cn organization: Changchun University of Science and Technology,College of Computer Science and Technology,Changchun,Jilin,China – sequence: 4 givenname: Qi surname: Li fullname: Li, Qi email: liqi@cust.edu.cn organization: Changchun University of Science and Technology,College of Computer Science and Technology,Changchun,Jilin,China |
BookMark | eNo1j9FKwzAUhiPohc69gRfxAVqTnqTtuZS6usGcwqZ4N9L0FIJZK2mq-PZO1KsPPvh--C_YaT_0xNi1FKmUAm9WVb1bVRoRRJqJDFIplM6zEk_YHAssQQsQKECds9eHyUc3xkDmwO-cN5FaXg39x-Cn6IbeeF6TiVMgXk_jUfANTeFoNxQ_h_DGuyHw7fZl8cQrb8bRdc6an_CSnXXGjzT_44w914tdtUzWj_er6nadOCkxJmhRWciVbLMCVIaYy9xgU2BjlSm6EgpojTTadk1BWktpm5aggRKssFo1MGNXv7uOiPbvwR1M-Nr_H4Zvkk1RnA |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICFTIC59930.2023.10456289 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9798350309034 |
EndPage | 1047 |
ExternalDocumentID | 10456289 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i119t-9c94c3641d2734299616a9b79bc4a7f8373da1a5cfb7e5511cbde3b383c0c54b3 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:12:50 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i119t-9c94c3641d2734299616a9b79bc4a7f8373da1a5cfb7e5511cbde3b383c0c54b3 |
PageCount | 4 |
ParticipantIDs | ieee_primary_10456289 |
PublicationCentury | 2000 |
PublicationDate | 2023-Nov.-17 |
PublicationDateYYYYMMDD | 2023-11-17 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-Nov.-17 day: 17 |
PublicationDecade | 2020 |
PublicationTitle | 2023 5th International Conference on Frontiers Technology of Information and Computer (ICFTIC) |
PublicationTitleAbbrev | ICFTIC |
PublicationYear | 2023 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.8537678 |
Snippet | Based on steady-state visual evoked potentials (SSVEP), a neuroelectric phenomenon where the brain's electrical signals respond to specific frequency stimuli,... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1044 |
SubjectTerms | Adaptation models attention mechanism Brain modeling Convolution Feature extraction feature fusion multi-stream atrous convolution ssvep classification Target recognition Vectors Visualization |
Title | Multistream Dilated Convolutional Feature Fusion Neural Network for SSVEP Classification |
URI | https://ieeexplore.ieee.org/document/10456289 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFA1uD-KTihO_ieBrakOSZnmeK5vgGGyTvY18FYZzk9H64K_3Ju0UBcG3ElpSchvOPek95yJ0l8qCSyktMcILwm1GSZcxTawDpu2F0EwFcfLTKBvM-ONczBuxetTCeO9j8ZlPwmX8l-82tgpHZbDDQ77eVS3UAuZWi7X20W3jm3k_7OXTYU8A4qZJ6Aqe7O7_0TklAkd-iEa7Ket6kZekKk1iP365Mf77nY5Q51ujh8df6HOM9vz6BM2jnjboP_QrfliuIJF0GB54bz4wvcIh56u2HudVOCfDwZwDRkd1NTiGFBZPJs_9MY7dMkMdUQxdB83y_rQ3IE3vBLKkVJVEWcUtyzh1wb8GMCejmVZGKmO5lgXQUuY01cIWRkJIKLXGeWaAr9rUCm7YKWqvN2t_hrBgzhSs0BLYGTcmVU6kBWcuWA12IZ07R52wLIu32h5jsVuRiz_GL9FBiE4Q9FF5hdrltvLXgOyluYkR_QRs06Sq |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFA06QX1SceK3EXxNbUjSLM9zZdOtDLbJ3ka-CsO5yWh98NebpJ2iIPgWAqElt-Wcm9xzLgB3Mc8p51wjxSxDVCcYtQiRSBuXaVvGJBFenDzIku6EPk7ZtBarBy2MtTYUn9nID8Ndvlnp0h-VuT_c8_WW2AY7DvgZruRau-C2ds6877XTca_NHObGke8LHm1W_OidEqAjPQDZ5qFVxchLVBYq0h-__Bj__VaHoPmt0oPDL_w5Alt2eQymQVHrFSDyFT7MF45KGugWvNefmFxAz_rKtYVp6U_KoLfncLNZVQ8OHYmFo9FzZwhDv0xfSRSC1wSTtDNud1HdPQHNMRYFElpQTRKKjXewcaiT4EQKxYXSVPLcJabESCyZzhV3QcFYK2OJchmrjjWjipyAxnK1tKcAMmJUTnLJXX5GlYqFYXFOifFmgy1H6M5A02_L7K0yyJhtduT8j_kbsNcdD_qzfi97ugD7PlJe3of5JWgU69JeOZwv1HWI7iczfqfz |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+5th+International+Conference+on+Frontiers+Technology+of+Information+and+Computer+%28ICFTIC%29&rft.atitle=Multistream+Dilated+Convolutional+Feature+Fusion+Neural+Network+for+SSVEP+Classification&rft.au=Li%2C+Xiujun&rft.au=Zhang%2C+Yongzheng&rft.au=Wu%2C+Yan&rft.au=Li%2C+Qi&rft.date=2023-11-17&rft.pub=IEEE&rft.spage=1044&rft.epage=1047&rft_id=info:doi/10.1109%2FICFTIC59930.2023.10456289&rft.externalDocID=10456289 |