Turbulence Modeling Through Deep Learning: An In-Depth Study of Wasserstein GANs

This research study compares the accuracy of different techniques based on deep learning (DL) for predicting turbulent flows. Different types of Generative Adversarial Networks (GANs) are examined in terms of their applicability to the study and simulation of turbulence. Next, we select Wasserstein...

Full description

Saved in:
Bibliographic Details
Published in2023 4th International Conference on Smart Electronics and Communication (ICOSEC) pp. 793 - 797
Main Authors Alghamdi, Wajdi, Mayakannan, S., Sivasankar, G A, Singh, Jagendra, Ravi Naik, B., Venkata Krishna Reddy, Ch
Format Conference Proceeding
LanguageEnglish
Published IEEE 20.09.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This research study compares the accuracy of different techniques based on deep learning (DL) for predicting turbulent flows. Different types of Generative Adversarial Networks (GANs) are examined in terms of their applicability to the study and simulation of turbulence. Next, we select Wasserstein Gans (WGANs) to produce localized disturbances. Network features including the learning rate and loss function are examined as they pertain to the performance of the WGANs during training on turbulent data gleaned from high-resolution Direct Numerical Simulations (DNS). DNS input data and the generated turbulent structures are proven to agree qualitatively well. The projected turbulent fields are evaluated quantitatively and statistically.
AbstractList This research study compares the accuracy of different techniques based on deep learning (DL) for predicting turbulent flows. Different types of Generative Adversarial Networks (GANs) are examined in terms of their applicability to the study and simulation of turbulence. Next, we select Wasserstein Gans (WGANs) to produce localized disturbances. Network features including the learning rate and loss function are examined as they pertain to the performance of the WGANs during training on turbulent data gleaned from high-resolution Direct Numerical Simulations (DNS). DNS input data and the generated turbulent structures are proven to agree qualitatively well. The projected turbulent fields are evaluated quantitatively and statistically.
Author Venkata Krishna Reddy, Ch
Sivasankar, G A
Alghamdi, Wajdi
Singh, Jagendra
Mayakannan, S.
Ravi Naik, B.
Author_xml – sequence: 1
  givenname: Wajdi
  surname: Alghamdi
  fullname: Alghamdi, Wajdi
  organization: King Abdulaziz University,Faculty of Computing and Information Technology,Department of Information Technology,Jeddah,Saudi Arabia,21589
– sequence: 2
  givenname: S.
  surname: Mayakannan
  fullname: Mayakannan, S.
  email: kannanarchieves@gmail.com
  organization: Vidyaa Vikas College of Engineering and Technology, Tiruchengode,Mechanical Engineering,Namakkal,Tamilnadu
– sequence: 3
  givenname: G A
  surname: Sivasankar
  fullname: Sivasankar, G A
  email: gassaero@gmail.com
  organization: KIT - Kalaignar Karunanidhi Institute of Technology,Department of Aeronautical Engineering,Coimbatore,641402
– sequence: 4
  givenname: Jagendra
  surname: Singh
  fullname: Singh, Jagendra
  organization: School of Computer Science Engineering and Technology, Bennett University,Great Noida,Uttar Pradesh
– sequence: 5
  givenname: B.
  surname: Ravi Naik
  fullname: Ravi Naik, B.
  email: ravi304banoth@gmail.com
  organization: St. Martin's Engineering College, Secunderabad,Department of Mechanical Engineering,Telangana,India
– sequence: 6
  givenname: Ch
  surname: Venkata Krishna Reddy
  fullname: Venkata Krishna Reddy, Ch
  email: Chkrishnareddy_eee@cbit.ac.in
  organization: Chaitanya Bharathi Institute of Technology,Department of Electrical and Electronics Engineering,Hyderabad
BookMark eNo1j0FPgzAYQGuiB537Bx7qDwBboPSrN8LmJEFnMozHpaUfgwQLKXDYv3eJenrJO7zk3ZFrNzgk5JGzkHOmnop8f9jmAngiw4hFcchZJAVIuCJrJRXEgsWMAcAt-agWb5YeXY30bbDYd-5Eq9YPy6mlG8SRlqi9u9hnmjlauGCD49zSw7zYMx0a-qWnCf00Y-foLnuf7slNo_sJ139ckc-XbZW_BuV-V-RZGXScqzlQYDXUqVYGwGghUi7rKFXKNFqLxhhpZJI2CrhVGg1YbgVPAFKwIq3rOo5X5OG32yHicfTdt_bn4_9o_AMKz04U
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICOSEC58147.2023.10275878
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350300888
EndPage 797
ExternalDocumentID 10275878
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-98da8c6a9b88ba55617c2699bfaa5fbb7b746f981d9aeb8d1d5148868d56ccc33
IEDL.DBID RIE
IngestDate Wed Jan 10 09:28:05 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-98da8c6a9b88ba55617c2699bfaa5fbb7b746f981d9aeb8d1d5148868d56ccc33
PageCount 5
ParticipantIDs ieee_primary_10275878
PublicationCentury 2000
PublicationDate 2023-Sept.-20
PublicationDateYYYYMMDD 2023-09-20
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-Sept.-20
  day: 20
PublicationDecade 2020
PublicationTitle 2023 4th International Conference on Smart Electronics and Communication (ICOSEC)
PublicationTitleAbbrev ICOSEC
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
Score 2.0130494
Snippet This research study compares the accuracy of different techniques based on deep learning (DL) for predicting turbulent flows. Different types of Generative...
SourceID ieee
SourceType Publisher
StartPage 793
SubjectTerms Correlation
Deep learning
DNS
Generative adversarial networks
High Reynolds number
Numerical models
Numerical simulation
Training
Turbulence
WGANs
Title Turbulence Modeling Through Deep Learning: An In-Depth Study of Wasserstein GANs
URI https://ieeexplore.ieee.org/document/10275878
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA62B_GkYsU3Ebzuupt9Jd5KH7aCtWCLvZVMHirCbtHdg_56k-xWURC8hRBImGEeSeabD6ELDUkoSGC8n_GLXqxp6HFjWF5KJCEcIsIcSOx2ko7m8c0iWTRgdYeFUUq54jPl26H7y5eFqOxTmbFwYtLbjLZQy9zcarDWJjpv-mZejnt394NeQsM48y0ruL9e_4M5xQWO4TaarLes60Ve_KoEX3z86sb47zPtoM43Rg9Pv6LPLtpQ-R6aziojJYcjwpblzGLN8aym4sF9pVa46af6eIW7OR7nXl-tyidsqwnfcaHxA3fwS0uBia-7k7cOmg8Hs97IazgTvOcwZKXHqORUpJwBpcAt92UmSMoYaM4TDZBBFqfaKEAyroDKUJqMidKUyiQVQkTRPmrnRa4OENY0UzphiZCSxTKIINKxyQ6oFqCCAOAQdaw4lqu6LcZyLYmjP-aP0ZbVii22IMEJapevlTo1Eb2EM6fJT93AoXc
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5aQT2pWPFtBK-77mZfibfSh622a8Et9lbyVBG2RXcP-utNsltFQfAWAiFhhskMyffNB8CFYpHPkadvP30vOqHCvkN1YDkxEghRFiBiSWKjNO5PwptpNK3J6pYLI6W04DPpmqH9yxdzXpqnMh3hSJe3CV4FazrxR6iia62D87pz5uWgfXffbUfYDxPX6IK7yxU_tFNs6uhtgXS5aYUYeXHLgrn841c_xn-fahs0v1l6cPyVf3bAisx3wTgrtZ0skwganTPDNodZJcYDO1IuYN1R9fEKtnI4yJ2OXBRP0OAJ3-FcwQdqCZhGBBNet9K3Jpj0ulm779SqCc6z75PCIVhQzGNKGMaMGvXLhKOYEKYojRRjCUvCWGkXCEIlw8IXumbCOMYiijnnQbAHGvk8l_sAKpxIFZGIC0FC4QUsUKGuD7DiTHoeYwegacwxW1SNMWZLSxz-MX8GNvrZaDgbDtLbI7BpPGSgF8g7Bo3itZQnOr8X7NR69RN7oKTB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+4th+International+Conference+on+Smart+Electronics+and+Communication+%28ICOSEC%29&rft.atitle=Turbulence+Modeling+Through+Deep+Learning%3A+An+In-Depth+Study+of+Wasserstein+GANs&rft.au=Alghamdi%2C+Wajdi&rft.au=Mayakannan%2C+S.&rft.au=Sivasankar%2C+G+A&rft.au=Singh%2C+Jagendra&rft.date=2023-09-20&rft.pub=IEEE&rft.spage=793&rft.epage=797&rft_id=info:doi/10.1109%2FICOSEC58147.2023.10275878&rft.externalDocID=10275878