Turbulence Modeling Through Deep Learning: An In-Depth Study of Wasserstein GANs
This research study compares the accuracy of different techniques based on deep learning (DL) for predicting turbulent flows. Different types of Generative Adversarial Networks (GANs) are examined in terms of their applicability to the study and simulation of turbulence. Next, we select Wasserstein...
Saved in:
Published in | 2023 4th International Conference on Smart Electronics and Communication (ICOSEC) pp. 793 - 797 |
---|---|
Main Authors | , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
20.09.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This research study compares the accuracy of different techniques based on deep learning (DL) for predicting turbulent flows. Different types of Generative Adversarial Networks (GANs) are examined in terms of their applicability to the study and simulation of turbulence. Next, we select Wasserstein Gans (WGANs) to produce localized disturbances. Network features including the learning rate and loss function are examined as they pertain to the performance of the WGANs during training on turbulent data gleaned from high-resolution Direct Numerical Simulations (DNS). DNS input data and the generated turbulent structures are proven to agree qualitatively well. The projected turbulent fields are evaluated quantitatively and statistically. |
---|---|
AbstractList | This research study compares the accuracy of different techniques based on deep learning (DL) for predicting turbulent flows. Different types of Generative Adversarial Networks (GANs) are examined in terms of their applicability to the study and simulation of turbulence. Next, we select Wasserstein Gans (WGANs) to produce localized disturbances. Network features including the learning rate and loss function are examined as they pertain to the performance of the WGANs during training on turbulent data gleaned from high-resolution Direct Numerical Simulations (DNS). DNS input data and the generated turbulent structures are proven to agree qualitatively well. The projected turbulent fields are evaluated quantitatively and statistically. |
Author | Venkata Krishna Reddy, Ch Sivasankar, G A Alghamdi, Wajdi Singh, Jagendra Mayakannan, S. Ravi Naik, B. |
Author_xml | – sequence: 1 givenname: Wajdi surname: Alghamdi fullname: Alghamdi, Wajdi organization: King Abdulaziz University,Faculty of Computing and Information Technology,Department of Information Technology,Jeddah,Saudi Arabia,21589 – sequence: 2 givenname: S. surname: Mayakannan fullname: Mayakannan, S. email: kannanarchieves@gmail.com organization: Vidyaa Vikas College of Engineering and Technology, Tiruchengode,Mechanical Engineering,Namakkal,Tamilnadu – sequence: 3 givenname: G A surname: Sivasankar fullname: Sivasankar, G A email: gassaero@gmail.com organization: KIT - Kalaignar Karunanidhi Institute of Technology,Department of Aeronautical Engineering,Coimbatore,641402 – sequence: 4 givenname: Jagendra surname: Singh fullname: Singh, Jagendra organization: School of Computer Science Engineering and Technology, Bennett University,Great Noida,Uttar Pradesh – sequence: 5 givenname: B. surname: Ravi Naik fullname: Ravi Naik, B. email: ravi304banoth@gmail.com organization: St. Martin's Engineering College, Secunderabad,Department of Mechanical Engineering,Telangana,India – sequence: 6 givenname: Ch surname: Venkata Krishna Reddy fullname: Venkata Krishna Reddy, Ch email: Chkrishnareddy_eee@cbit.ac.in organization: Chaitanya Bharathi Institute of Technology,Department of Electrical and Electronics Engineering,Hyderabad |
BookMark | eNo1j0FPgzAYQGuiB537Bx7qDwBboPSrN8LmJEFnMozHpaUfgwQLKXDYv3eJenrJO7zk3ZFrNzgk5JGzkHOmnop8f9jmAngiw4hFcchZJAVIuCJrJRXEgsWMAcAt-agWb5YeXY30bbDYd-5Eq9YPy6mlG8SRlqi9u9hnmjlauGCD49zSw7zYMx0a-qWnCf00Y-foLnuf7slNo_sJ139ckc-XbZW_BuV-V-RZGXScqzlQYDXUqVYGwGghUi7rKFXKNFqLxhhpZJI2CrhVGg1YbgVPAFKwIq3rOo5X5OG32yHicfTdt_bn4_9o_AMKz04U |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICOSEC58147.2023.10275878 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9798350300888 |
EndPage | 797 |
ExternalDocumentID | 10275878 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i119t-98da8c6a9b88ba55617c2699bfaa5fbb7b746f981d9aeb8d1d5148868d56ccc33 |
IEDL.DBID | RIE |
IngestDate | Wed Jan 10 09:28:05 EST 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i119t-98da8c6a9b88ba55617c2699bfaa5fbb7b746f981d9aeb8d1d5148868d56ccc33 |
PageCount | 5 |
ParticipantIDs | ieee_primary_10275878 |
PublicationCentury | 2000 |
PublicationDate | 2023-Sept.-20 |
PublicationDateYYYYMMDD | 2023-09-20 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-Sept.-20 day: 20 |
PublicationDecade | 2020 |
PublicationTitle | 2023 4th International Conference on Smart Electronics and Communication (ICOSEC) |
PublicationTitleAbbrev | ICOSEC |
PublicationYear | 2023 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 2.0130494 |
Snippet | This research study compares the accuracy of different techniques based on deep learning (DL) for predicting turbulent flows. Different types of Generative... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 793 |
SubjectTerms | Correlation Deep learning DNS Generative adversarial networks High Reynolds number Numerical models Numerical simulation Training Turbulence WGANs |
Title | Turbulence Modeling Through Deep Learning: An In-Depth Study of Wasserstein GANs |
URI | https://ieeexplore.ieee.org/document/10275878 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA62B_GkYsU3Ebzuupt9Jd5KH7aCtWCLvZVMHirCbtHdg_56k-xWURC8hRBImGEeSeabD6ELDUkoSGC8n_GLXqxp6HFjWF5KJCEcIsIcSOx2ko7m8c0iWTRgdYeFUUq54jPl26H7y5eFqOxTmbFwYtLbjLZQy9zcarDWJjpv-mZejnt394NeQsM48y0ruL9e_4M5xQWO4TaarLes60Ve_KoEX3z86sb47zPtoM43Rg9Pv6LPLtpQ-R6aziojJYcjwpblzGLN8aym4sF9pVa46af6eIW7OR7nXl-tyidsqwnfcaHxA3fwS0uBia-7k7cOmg8Hs97IazgTvOcwZKXHqORUpJwBpcAt92UmSMoYaM4TDZBBFqfaKEAyroDKUJqMidKUyiQVQkTRPmrnRa4OENY0UzphiZCSxTKIINKxyQ6oFqCCAOAQdaw4lqu6LcZyLYmjP-aP0ZbVii22IMEJapevlTo1Eb2EM6fJT93AoXc |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5aQT2pWPFtBK-77mZfibfSh622a8Et9lbyVBG2RXcP-utNsltFQfAWAiFhhskMyffNB8CFYpHPkadvP30vOqHCvkN1YDkxEghRFiBiSWKjNO5PwptpNK3J6pYLI6W04DPpmqH9yxdzXpqnMh3hSJe3CV4FazrxR6iia62D87pz5uWgfXffbUfYDxPX6IK7yxU_tFNs6uhtgXS5aYUYeXHLgrn841c_xn-fahs0v1l6cPyVf3bAisx3wTgrtZ0skwganTPDNodZJcYDO1IuYN1R9fEKtnI4yJ2OXBRP0OAJ3-FcwQdqCZhGBBNet9K3Jpj0ulm779SqCc6z75PCIVhQzGNKGMaMGvXLhKOYEKYojRRjCUvCWGkXCEIlw8IXumbCOMYiijnnQbAHGvk8l_sAKpxIFZGIC0FC4QUsUKGuD7DiTHoeYwegacwxW1SNMWZLSxz-MX8GNvrZaDgbDtLbI7BpPGSgF8g7Bo3itZQnOr8X7NR69RN7oKTB |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+4th+International+Conference+on+Smart+Electronics+and+Communication+%28ICOSEC%29&rft.atitle=Turbulence+Modeling+Through+Deep+Learning%3A+An+In-Depth+Study+of+Wasserstein+GANs&rft.au=Alghamdi%2C+Wajdi&rft.au=Mayakannan%2C+S.&rft.au=Sivasankar%2C+G+A&rft.au=Singh%2C+Jagendra&rft.date=2023-09-20&rft.pub=IEEE&rft.spage=793&rft.epage=797&rft_id=info:doi/10.1109%2FICOSEC58147.2023.10275878&rft.externalDocID=10275878 |