A Convolutional and Recurrent Neural Network-Based Control Algorithm for ankle exoskeleton: Validation of performance using IMU-based gait analysis

The development of exoskeletons control algorithms is a challenging task due to the inevitable interaction between robot and human. Data-driven approaches represent a promising alternative and complement to traditional methods, offering new avenues for discerning user intentions and enhancing contro...

Full description

Saved in:
Bibliographic Details
Published inProceedings (IEEE International Workshop on Metrology for Industry 4.0 and IoT. Online) pp. 586 - 590
Main Authors Liguori, Lorenzo, D'Alvia, Livio, Del Prete, Zaccaria, Palermo, Eduardo
Format Conference Proceeding
LanguageEnglish
Published IEEE 29.05.2024
Subjects
Online AccessGet full text
ISSN2837-0872
DOI10.1109/MetroInd4.0IoT61288.2024.10584124

Cover

Abstract The development of exoskeletons control algorithms is a challenging task due to the inevitable interaction between robot and human. Data-driven approaches represent a promising alternative and complement to traditional methods, offering new avenues for discerning user intentions and enhancing controller design. Machine learning models have shown significant efficacy in interpreting data from wearable sensors, leading to advancements in this field. In the present work, we present a Convolutional and Recurrent Neural Network (CRNN) to predict continuous gait phase (GP) based on data coming from a single shank-mounted intertial measurment unit (IMU). Eleven healthy subject were enrolled in the training data collection. The validation employed a verified IMU-based algorithm that detects four primary gait events: heel strike, mid-stance, toe-off, and midswing. Fourteen healthy subjects participated in the validation. The CRNN accurately predicted the continuous GP with an overall RMSE of 0.7% throughout the gait cycle. Compared to the validation algorithm, the CRNN achieved a mean difference of 0.4% and a standard deviation of 3.2% with the algorithm output within all four gait phases, best performing on mid-swing. The results demonstrate the feasibility of the proposed method for implementation in an exoskeleton control algorithm.
AbstractList The development of exoskeletons control algorithms is a challenging task due to the inevitable interaction between robot and human. Data-driven approaches represent a promising alternative and complement to traditional methods, offering new avenues for discerning user intentions and enhancing controller design. Machine learning models have shown significant efficacy in interpreting data from wearable sensors, leading to advancements in this field. In the present work, we present a Convolutional and Recurrent Neural Network (CRNN) to predict continuous gait phase (GP) based on data coming from a single shank-mounted intertial measurment unit (IMU). Eleven healthy subject were enrolled in the training data collection. The validation employed a verified IMU-based algorithm that detects four primary gait events: heel strike, mid-stance, toe-off, and midswing. Fourteen healthy subjects participated in the validation. The CRNN accurately predicted the continuous GP with an overall RMSE of 0.7% throughout the gait cycle. Compared to the validation algorithm, the CRNN achieved a mean difference of 0.4% and a standard deviation of 3.2% with the algorithm output within all four gait phases, best performing on mid-swing. The results demonstrate the feasibility of the proposed method for implementation in an exoskeleton control algorithm.
Author D'Alvia, Livio
Del Prete, Zaccaria
Liguori, Lorenzo
Palermo, Eduardo
Author_xml – sequence: 1
  givenname: Lorenzo
  surname: Liguori
  fullname: Liguori, Lorenzo
  email: lorenzo.liguori@uniroma1.it
  organization: Sapeinza, University of Rome,Department of Mechanical and Aerospace Engineering,Rome,Italy
– sequence: 2
  givenname: Livio
  surname: D'Alvia
  fullname: D'Alvia, Livio
  email: livio.dalvia@uniroma1.it
  organization: Sapeinza, University of Rome,Department of Mechanical and Aerospace Engineering,Rome,Italy
– sequence: 3
  givenname: Zaccaria
  surname: Del Prete
  fullname: Del Prete, Zaccaria
  email: zaccaria.delprete@uniroma1.it
  organization: Sapeinza, University of Rome,Department of Mechanical and Aerospace Engineering,Rome,Italy
– sequence: 4
  givenname: Eduardo
  surname: Palermo
  fullname: Palermo, Eduardo
  email: eduardo.palermo@uniroma1.it
  organization: Sapeinza, University of Rome,Department of Mechanical and Aerospace Engineering,Rome,Italy
BookMark eNo1kMtOwzAQRQ0CiVL6Byy8ZZHgR5w47ErFo1JbJNSyrZx6Ukxdu3IcoN_BD5PyWF1pZs7R6J6jE-cdIHRFSUopKa-nEIMfO52lZOznOWVSpoywLKVEyIyy7AgNyqKUXBAuhWT8GPWY5EVCZMHO0KBp3gghnMpSZlkPfQ3xyLt3b9tovFMWK6fxM6zaEMBFPIM2dMMZxA8fNsmtakAfgO4Hi4d27YOJr1tc-9CBGwsYPn2zAQvRuxv8oqzR6iDGvsY7CN3dVrkV4LYxbo3H00VS_SjXysTOoOy-Mc0FOq2VbWDwl320uL-bjx6TydPDeDScJIbSMialqKDM60KAYIxVqtCMci05aLoSXGgmcihEKVjOlc4rDQCU0bpWOquEyDTvo8tfr-lWy10wWxX2y_8e-Tf0hnAy
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/MetroInd4.0IoT61288.2024.10584124
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350385823
EISSN 2837-0872
EndPage 590
ExternalDocumentID 10584124
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAJGR
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i119t-95be96f75e5222ba7d213d83ed1c535d256e7595263ad6bdeee121ffad4b554d3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:04:48 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-95be96f75e5222ba7d213d83ed1c535d256e7595263ad6bdeee121ffad4b554d3
PageCount 5
ParticipantIDs ieee_primary_10584124
PublicationCentury 2000
PublicationDate 2024-May-29
PublicationDateYYYYMMDD 2024-05-29
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-May-29
  day: 29
PublicationDecade 2020
PublicationTitle Proceedings (IEEE International Workshop on Metrology for Industry 4.0 and IoT. Online)
PublicationTitleAbbrev MetroInd4.0 & IoT
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003189844
Score 1.8733352
Snippet The development of exoskeletons control algorithms is a challenging task due to the inevitable interaction between robot and human. Data-driven approaches...
SourceID ieee
SourceType Publisher
StartPage 586
SubjectTerms Ankle
ankle exoskeleton
convolutional recurrent neural networks
deep learning
Exoskeletons
Feature extraction
gait analysis
IMU
Prediction algorithms
Recurrent neural networks
Torque
Training data
wearables sensors
Title A Convolutional and Recurrent Neural Network-Based Control Algorithm for ankle exoskeleton: Validation of performance using IMU-based gait analysis
URI https://ieeexplore.ieee.org/document/10584124
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA5uD-KTihPv5MEXH1LXXHrxbYpjEzZENtnbSJpkjs12zE7Ev-Ef9qTdBQXBt5LSNJye8n0k3_kOQpd1CySjnkQkpFYTTkNFosRGJBAsFCKkmhcimk43aPX5w0AMlsXqRS2MMaYQnxnPXRZn-TpLFm6rDP5wgEsApAqqQJ6VxVrrDRVIzjjifBtdLX00rzsmn2ftVHOv3s56AOWR03JR7q3m-dFRpQCU5i7qrpZS6kgm3iJXXvL5y6Xx32vdQ7VN7R5-XKPSPtoy6QH6amC4_b5MMznFMtX4yW21O3Mm7Bw6YLBbSsLJLSCbdg84ETtuTEfZfJy_vGLgt9i1eDfYfGRvEwAsII43-BmofNmZCWcWzzaVCNiJ6ke43ekTVUw5kuMcZihtUGqo37zv3bXIsh0DGft-nJNYKBMHNhQGOBtVMtTUZzpiRvuJYEIDeTKhiAUNmNSB0hASn_rWSs0VkBbNDlE1zVJzhLCM_cSEXCoWWeeeoySVWkTwGqtZzPgxqrmIDmel48ZwFcyTP8ZP0Y77sO5Un8ZnqJrPF-YcyEKuLook-QZ5VMEg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA5eQH1SceLdPPjiQ-qaSy--qSibbkNkE99G0iRzbLZjdiL-Df-wJ-02URB8Kyk9DWnK93Hyne8gdFK1QDKqSURCajXhNFQkSmxEAsFCIUKqeSGiabaCWoffPomnabF6UQtjjCnEZ8Zzl8VZvs6SiUuVwR8OcAmAtIiWAfi5KMu15ikV2J5xxPkKOp06aZ41TT7O6qnmXrWetQHMI6fmotybRfrRU6WAlJt11JpNplSSDLxJrrzk45dP479nu4Eq39V7-H6OS5towaRb6PMCw-236UaTQyxTjR9cst3ZM2Hn0QGDrVIUTi4B27R7wMnY8cWwl437-fMLBoaLXZN3g8179joAyALqeI4fgcyXvZlwZvHouxYBO1l9D9ebHaKKkD3ZzyFCaYRSQZ2b6_ZVjUwbMpC-78c5iYUycWBDYYC1USVDTX2mI2a0nwgmNNAnE4pY0IBJHSgNS-JT31qpuQLaotk2Wkqz1OwgLGM_MSGXikXW-ecoSaUWEbzGahYzvosqbkW7o9JzoztbzL0_xo_Raq3dbHQb9dbdPlpzH9md8dP4AC3l44k5BOqQq6Niw3wBu97EbQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Proceedings+%28IEEE+International+Workshop+on+Metrology+for+Industry+4.0+and+IoT.+Online%29&rft.atitle=A+Convolutional+and+Recurrent+Neural+Network-Based+Control+Algorithm+for+ankle+exoskeleton%3A+Validation+of+performance+using+IMU-based+gait+analysis&rft.au=Liguori%2C+Lorenzo&rft.au=D%27Alvia%2C+Livio&rft.au=Del+Prete%2C+Zaccaria&rft.au=Palermo%2C+Eduardo&rft.date=2024-05-29&rft.pub=IEEE&rft.eissn=2837-0872&rft.spage=586&rft.epage=590&rft_id=info:doi/10.1109%2FMetroInd4.0IoT61288.2024.10584124&rft.externalDocID=10584124