Steel Strip Defect Classification Model Based on Convolutional Neural Network Composites

In actual industrial scenes, the complex and diverse textures of surface flaw of steel strips lead to poor performance and generalization of the classification and recognition tasks of surface flaw of steel strips. In this paper, an end-to-end classification model of surface flaw of steel strips bas...

Full description

Saved in:
Bibliographic Details
Published in2022 2nd International Conference on Networking Systems of AI (INSAI) pp. 78 - 82
Main Authors Ye, Fei, Bian, Lin
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.10.2022
Subjects
Online AccessGet full text
DOI10.1109/INSAI56792.2022.00024

Cover

Abstract In actual industrial scenes, the complex and diverse textures of surface flaw of steel strips lead to poor performance and generalization of the classification and recognition tasks of surface flaw of steel strips. In this paper, an end-to-end classification model of surface flaw of steel strips based on convolution neural network-EDESPNet is proposed. Improve the accuracy of steel belt defect classification. The model inputs defect samples into different branch networks for simultaneous feature extraction, and adds a weight distribution network to enhance category-related feature information, promotes model efficiency and feature spread, and rise the model's portrayal ability. The results indicate that the EDESPNet classification model is surpass VGG19, DenseNet, ResNet50, Xception and other models. The classification precision in the NEU-CLS data set is 94.17%, and the classification accuracy rate in the BS4-CLS data set is 72.52%. The EDESPNet classification model proposed in the article has higher experimental evaluation standards on the BS4-CLS data set than other classification models, and it has the highest correct rate in the NEU-CLS public datasets. The results indicate that the EDESPNet classification model has better recognition task effect and good robustness.
AbstractList In actual industrial scenes, the complex and diverse textures of surface flaw of steel strips lead to poor performance and generalization of the classification and recognition tasks of surface flaw of steel strips. In this paper, an end-to-end classification model of surface flaw of steel strips based on convolution neural network-EDESPNet is proposed. Improve the accuracy of steel belt defect classification. The model inputs defect samples into different branch networks for simultaneous feature extraction, and adds a weight distribution network to enhance category-related feature information, promotes model efficiency and feature spread, and rise the model's portrayal ability. The results indicate that the EDESPNet classification model is surpass VGG19, DenseNet, ResNet50, Xception and other models. The classification precision in the NEU-CLS data set is 94.17%, and the classification accuracy rate in the BS4-CLS data set is 72.52%. The EDESPNet classification model proposed in the article has higher experimental evaluation standards on the BS4-CLS data set than other classification models, and it has the highest correct rate in the NEU-CLS public datasets. The results indicate that the EDESPNet classification model has better recognition task effect and good robustness.
Author Bian, Lin
Ye, Fei
Author_xml – sequence: 1
  givenname: Fei
  surname: Ye
  fullname: Ye, Fei
  email: 310098399@qq.com
  organization: Dianchi College of Yunnan University,Kunming,China
– sequence: 2
  givenname: Lin
  surname: Bian
  fullname: Bian, Lin
  email: 1150748510@qq.com
  organization: Dianchi College of Yunnan University,Kunming,China
BookMark eNotjMtKxDAYRiPowhl9A4W8QMf8uTbLsd4K47iogrshJn8h2GlKm1F8e-tldTicj29BjvvUIyGXwFYAzF7V22ZdK20sX3HG-YoxxuURWYDWSlowpTklr01G7GiTxzjQG2zRZ1p1bppiG73LMfX0MYV5ce0mDHTWKvUfqTv8JNfRLR7GX-TPNL7PcT-kKWaczshJ67oJz_-5JC93t8_VQ7F5uq-r9aaIADYXVmKJjrEArQyifFNt8Eq60gfjPBpRBhW0t3pWwbTmwXruUQjNrOYYpFiSi7_fiIi7YYx7N37tgIFRoEB8A_bXUIo
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/INSAI56792.2022.00024
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1665491787
9781665491785
EndPage 82
ExternalDocumentID 10175151
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-94e8ea00d1f4d38b5fdc54a8cd7ace738d5d6c96d7a30662d9c2ce3360962ed43
IEDL.DBID RIE
IngestDate Wed Aug 27 02:21:33 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-94e8ea00d1f4d38b5fdc54a8cd7ace738d5d6c96d7a30662d9c2ce3360962ed43
PageCount 5
ParticipantIDs ieee_primary_10175151
PublicationCentury 2000
PublicationDate 2022-Oct.
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-Oct.
PublicationDecade 2020
PublicationTitle 2022 2nd International Conference on Networking Systems of AI (INSAI)
PublicationTitleAbbrev INSAI
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8111631
Snippet In actual industrial scenes, the complex and diverse textures of surface flaw of steel strips lead to poor performance and generalization of the classification...
SourceID ieee
SourceType Publisher
StartPage 78
SubjectTerms classification
convolution neural network
defect classification
feature information
model fusion
network enhancement
Title Steel Strip Defect Classification Model Based on Convolutional Neural Network Composites
URI https://ieeexplore.ieee.org/document/10175151
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60J08qVnyzB6_bJtlHkqOvUgWLUAu9lezuLIilFU09-Oud2aQqguAp2RyyYWbYL7P7fTOMnSdBBZ-nQUhplFDgjLDGSaEJ_WjfIot1Cu5HZjhRd1M9bcXqUQsDAJF8Bj26jWf5fulWtFXWp_BB_MVkZxPjrBFrtaqcNCn7mO5e3GqcgARWWSzESUL2H11TImgMttloPV3DFXnurWrbcx-_KjH--3t2WPdbn8cfvpBnl23AYo9NxzXAnI9rXAb4NRBNg8eWl0QGivbn1Phszi8RuDzHIb7tvY28as6pTEe8RF44p4WCCF3w1mWTwc3j1VC0fRPEU5qWtSgVFFAliU-D8rKwOninVVU4n1cOcll47Y0rDQ4lFYD3pcscoLMwncnAK7nPOovlAg4Yl8FaX-rKIrSrJBQV_s-Y3Gd5cJgHqvSQdckss5emNMZsbZGjP54fsy1yTcOGO2Gd-nUFp4jqtT2L3vwEdcGjug
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVQGWACRBHfeGBNm8QfSUa-qhbaCqmt1K1K7LOEqFoEKQO_njsnBYSExJQ4Qxz5LL-c_d47xi5DJ51NIhcIoWUgweig0EYEitCP9i1i71MwGOruRN5P1bQWq3stDAB48hm06Naf5dulWdFWWZumD-IvJjubCPxSVXKtWpcThVkbE96rnsIuSGIVeytOkrL_qJviYaOzw4brDiu2yHNrVRYt8_HLi_HfX7TLmt8KPf74hT17bAMW-2w6KgHmfFTiQsBvgYga3Be9JDqQjwCn0mdzfo3QZTk28W3v9dzL55yMOvzFM8M5LRVE6YK3Jpt07sY33aCunBA8RVFWBpmEFPIwtJGTVqSFctYomafGJrmBRKRWWW0yjU1BFvA2M7EBDBcmNDFYKQ5YY7FcwCHjwhWFzVReILjL0KU5_tHoxMaJM5gJyuiINWlYZi-VOcZsPSLHfzy_YFvd8aA_6_eGDydsm8JUceNOWaN8XcEZYnxZnPvIfgI2l6cH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+2nd+International+Conference+on+Networking+Systems+of+AI+%28INSAI%29&rft.atitle=Steel+Strip+Defect+Classification+Model+Based+on+Convolutional+Neural+Network+Composites&rft.au=Ye%2C+Fei&rft.au=Bian%2C+Lin&rft.date=2022-10-01&rft.pub=IEEE&rft.spage=78&rft.epage=82&rft_id=info:doi/10.1109%2FINSAI56792.2022.00024&rft.externalDocID=10175151