Trustworthiness Evaluation System of UEIOT Devices Based on Deep Learning

With the rising popularity of smart devices and the growth of IoT applications, AI technology is thriving in edge computing environments. These environments provide ample opportunities for applying AI due to the abundance of realtime sensing data and diverse application scenarios. Moreover, AI techn...

Full description

Saved in:
Bibliographic Details
Published in2023 International Conference on Networks, Communications and Intelligent Computing (NCIC) pp. 116 - 122
Main Authors Chen, Cen, Wang, Ming, Li, Nuannuan, Lv, Zhuo, Li, Mingyan, Chang, Hao
Format Conference Proceeding
LanguageEnglish
Published IEEE 17.11.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With the rising popularity of smart devices and the growth of IoT applications, AI technology is thriving in edge computing environments. These environments provide ample opportunities for applying AI due to the abundance of realtime sensing data and diverse application scenarios. Moreover, AI technology facilitates the extraction of value from edge data, thus driving the development of emerging information industries, particularly in areas like smart grids. However, the security of IoT devices in smart grids faces significant challenges, making it difficult to swiftly and effectively assess the trustworthiness of such devices. This poses implications for ensuring information security in IoT and edge computing. This paper introduces existing models for evaluating IoT devices, identifies shortcomings in current systems, and proposes a trust evaluation method for UEIOT devices based on deep learning. The experimental results demonstrate the following contributions of this paper: (1) Transformation of CNN's traditional map feature extraction into the extraction of IoT device connection data for effectively evaluating IoT devices over a historical period. (2) Application of the DQN model analogy to evaluate ubiquitous power IoT devices and simulate interactions between intelligent body devices and external IoT devices.
AbstractList With the rising popularity of smart devices and the growth of IoT applications, AI technology is thriving in edge computing environments. These environments provide ample opportunities for applying AI due to the abundance of realtime sensing data and diverse application scenarios. Moreover, AI technology facilitates the extraction of value from edge data, thus driving the development of emerging information industries, particularly in areas like smart grids. However, the security of IoT devices in smart grids faces significant challenges, making it difficult to swiftly and effectively assess the trustworthiness of such devices. This poses implications for ensuring information security in IoT and edge computing. This paper introduces existing models for evaluating IoT devices, identifies shortcomings in current systems, and proposes a trust evaluation method for UEIOT devices based on deep learning. The experimental results demonstrate the following contributions of this paper: (1) Transformation of CNN's traditional map feature extraction into the extraction of IoT device connection data for effectively evaluating IoT devices over a historical period. (2) Application of the DQN model analogy to evaluate ubiquitous power IoT devices and simulate interactions between intelligent body devices and external IoT devices.
Author Li, Mingyan
Chang, Hao
Chen, Cen
Li, Nuannuan
Lv, Zhuo
Wang, Ming
Author_xml – sequence: 1
  givenname: Cen
  surname: Chen
  fullname: Chen, Cen
  email: 1020065011@qq.com
  organization: State Grid Henan Electric Power Research Institute,Zhengzhou,China
– sequence: 2
  givenname: Ming
  surname: Wang
  fullname: Wang, Ming
  email: ming-wang@sgcc.com.cn
  organization: State Grid Corporation of China,Beijing,China
– sequence: 3
  givenname: Nuannuan
  surname: Li
  fullname: Li, Nuannuan
  email: 18339231859@163.com
  organization: State Grid Henan Electric Power Research Institute,Zhengzhou,China
– sequence: 4
  givenname: Zhuo
  surname: Lv
  fullname: Lv, Zhuo
  email: zhuanzhuan2325@sina.com
  organization: State Grid Henan Electric Power Research Institute,Zhengzhou,China
– sequence: 5
  givenname: Mingyan
  surname: Li
  fullname: Li, Mingyan
  email: limingyan@stu.xjtu.edu.cn
  organization: State Grid Henan Electric Power Research Institute,Zhengzhou,China
– sequence: 6
  givenname: Hao
  surname: Chang
  fullname: Chang, Hao
  email: chandy1994@hotmail.com
  organization: State Grid Henan Electric Power Research Institute,Zhengzhou,China
BookMark eNotjM1OwkAYANdED4q8AYd9gdZv_7tHLVWbNHKwnMnSfqubwJZ0C4a3hwQvM5fJPJH7OEQkZMEgZwzsy1dZl5oVosg5cJEDANd3ZG6NLYQCYZiV9pHU7XhM098wTr8hYkq0Ornd0U1hiPT7nCbc08HTdVWvWrrEU-gw0TeXsKfXYIl4oA26MYb480wevNslnP97RtbvVVt-Zs3qoy5fmywwZqfMSuY1CM-2BkFZ13XYOa37LfS98cglou20UtwLFIBGei24vkJKMMIrMSOL2zcg4uYwhr0bzxsGiltdSHEBs6tKWQ
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/NCIC61838.2023.00026
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL) - NZ
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350371949
EndPage 122
ExternalDocumentID 10529684
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-941f603f1b7e059acceca66db0dd7fe24ee9c6552f3e30e74f6326f6344073f53
IEDL.DBID RIE
IngestDate Wed May 22 07:08:16 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-941f603f1b7e059acceca66db0dd7fe24ee9c6552f3e30e74f6326f6344073f53
PageCount 7
ParticipantIDs ieee_primary_10529684
PublicationCentury 2000
PublicationDate 2023-Nov.-17
PublicationDateYYYYMMDD 2023-11-17
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-Nov.-17
  day: 17
PublicationDecade 2020
PublicationTitle 2023 International Conference on Networks, Communications and Intelligent Computing (NCIC)
PublicationTitleAbbrev NCIC
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8536656
Snippet With the rising popularity of smart devices and the growth of IoT applications, AI technology is thriving in edge computing environments. These environments...
SourceID ieee
SourceType Publisher
StartPage 116
SubjectTerms CNN
Computational modeling
Data mining
Deep learning
DQN
Feature extraction
Internet of Things
MLP
Smart grids
Training
UEIOT
Title Trustworthiness Evaluation System of UEIOT Devices Based on Deep Learning
URI https://ieeexplore.ieee.org/document/10529684
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LSgMxFA22K1cqVnyThdupyUwmmdnaB61gddFCdyWPGxGhLTKz8eu9yUyrCIKbEEIyE_K6N8k5J4TcuUwxp5hOlGM2EZZ5nFJGJKbQMnVeaaUC3_lpJicL8bjMly1ZPXJhACCCz6AfovEu321sHY7KcIaHW8JCdEgHd24NWaulw3FW3s8G04HEIRoQW2kQLo2SCT8eTYk2Y3xEZru_NVCR935dmb79_CXE-O_qHJPeNz2PvuwNzwk5gPUpmc4DeyIi_iKSnY72Ot60kSWnG08Xo-nznA4hrg_0AU2Yo5hhCLClrdTqa48sxqP5YJK07yQkb5yXVVIK7iXLPDcK0FvS1oLVUjrDnFMeUgFQWpnnqc8gY6CEl-i0YSBwN5f5PDsj3fVmDeeEcq5sgUVAWC60zbQupMgN-nRCK_zIBemFdlhtGymM1a4JLv9IvyKHoS8CeY-ra9KtPmq4QStemdvYe1-2kZ5E
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT8MgGCY6D3pS44zfcvDaCS2F9uo-supWPXTJbguFF2NM1sV0F3-9QLtpTEy8EEL6lZfC87Y8zwNCdzoSRAsiA6GJCpgixg6pkgVlInmojZBCOL3zNOfjGXucx_NWrO61MADgyWfQc1W_lq8rtXa_yuwId6uECdtFexb447CRa7WCOErS-7yf9bl9SR1nK3TWpd404ce2KR41Roco39yvIYu899Z12VOfv6wY__1AR6j7LdDDL1voOUY7sDxBWeH0E57z57nseLh18saNMTmuDJ4Ns-cCD8DPEPjBgpjG9oABwAq3ZquvXTQbDYv-OGh3SgjeKE3rIGXUcBIZWgqw-ZJUCpTkXJdEa2EgZACp4jZiJoKIgGCG27TNFsx-z0Umjk5RZ1kt4QxhSoVK7CnAFGVSRVImnMWlzeqYFPYi56jr4rBYNWYYi00ILv5ov0X742I6WUyy_OkSHbh-cVI-Kq5Qp_5Yw7XF9Lq88T35BSvvoY4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+International+Conference+on+Networks%2C+Communications+and+Intelligent+Computing+%28NCIC%29&rft.atitle=Trustworthiness+Evaluation+System+of+UEIOT+Devices+Based+on+Deep+Learning&rft.au=Chen%2C+Cen&rft.au=Wang%2C+Ming&rft.au=Li%2C+Nuannuan&rft.au=Lv%2C+Zhuo&rft.date=2023-11-17&rft.pub=IEEE&rft.spage=116&rft.epage=122&rft_id=info:doi/10.1109%2FNCIC61838.2023.00026&rft.externalDocID=10529684