YOLO-GG: a slight object detection model for empty-dish recycling robot

Empty-dish recycling robot is an effective product to solve the labor shortage problem in food service. A key research point is to design a fast and accurate empty dish detection model for the robot. With the development of deep learning techniques, researchers have presented several deep learning-b...

Full description

Saved in:
Bibliographic Details
Published inInternational Conference on Advanced Mechatronic Systems pp. 59 - 63
Main Authors Ge, Yifei, Yue, Xuebin, Meng, Lin
Format Conference Proceeding
LanguageEnglish
Published IEEE 17.12.2022
Subjects
Online AccessGet full text
ISSN2325-0690
DOI10.1109/ICAMechS57222.2022.10003347

Cover

Abstract Empty-dish recycling robot is an effective product to solve the labor shortage problem in food service. A key research point is to design a fast and accurate empty dish detection model for the robot. With the development of deep learning techniques, researchers have presented several deep learning-based models for empty-dish detection with excellent accuracy. However, to implement the empty dish detection model on an embedded device in the robot, the model should be optimized with a compact size and less calculation. To realize the optimized empty-dish detection model, this paper proposes a novel YOLO-GG model which implements the GPU-efficient Ghost module on the YOLO. In detail, the proposal adopts the G-Ghost module to replace the backbone of YOLOV4 in CSPDarknet. Meanwhile, we reduce the convolution layer in the Neck of the YOLOV4 to decrease the model parameters. The proposed model is trained on the Dish-20 dataset. Experimental results show that YOLO-GG achieves 23.4G floating point operations, 99.34% mean average precision, and 71.2 frames per second. The lower parameters and high accuracy of YOLO-GG prove the effectiveness.
AbstractList Empty-dish recycling robot is an effective product to solve the labor shortage problem in food service. A key research point is to design a fast and accurate empty dish detection model for the robot. With the development of deep learning techniques, researchers have presented several deep learning-based models for empty-dish detection with excellent accuracy. However, to implement the empty dish detection model on an embedded device in the robot, the model should be optimized with a compact size and less calculation. To realize the optimized empty-dish detection model, this paper proposes a novel YOLO-GG model which implements the GPU-efficient Ghost module on the YOLO. In detail, the proposal adopts the G-Ghost module to replace the backbone of YOLOV4 in CSPDarknet. Meanwhile, we reduce the convolution layer in the Neck of the YOLOV4 to decrease the model parameters. The proposed model is trained on the Dish-20 dataset. Experimental results show that YOLO-GG achieves 23.4G floating point operations, 99.34% mean average precision, and 71.2 frames per second. The lower parameters and high accuracy of YOLO-GG prove the effectiveness.
Author Yue, Xuebin
Meng, Lin
Ge, Yifei
Author_xml – sequence: 1
  givenname: Yifei
  surname: Ge
  fullname: Ge, Yifei
  email: gr0607pe@ed.ritsumei.ac.jp
  organization: Ritsumeikan University,Graduate School of Science and Engineering,,Kusatsu,Shiga 525-8577,Japan
– sequence: 2
  givenname: Xuebin
  surname: Yue
  fullname: Yue, Xuebin
  organization: Ritsumeikan University,Graduate School of Science and Engineering,,Kusatsu,Shiga 525-8577,Japan
– sequence: 3
  givenname: Lin
  surname: Meng
  fullname: Meng, Lin
  email: menglin@fc.ritsumei.ac.jp
  organization: Ritsumeikan University,College of Science and Engineering,Kusatsu,Shiga 525-8577,Japan
BookMark eNo1j7FOwzAURQ0Cibb0DxgsMae8Z9eJzYYqCEhFHYCBqXLs58ZVEldJlv49kYDlnuXo6t45u-pSR4zdI6wQwTy8bZ7eydUfqhBCrARMgQAg5bq4YHPMc7XOpQZ1yWZCCpVBbuCGLYfhOFloFGgNM1Z-77a7rCwfueVDEw_1yFN1JDdyT-OEmDreJk8ND6nn1J7Gc-bjUPOe3Nk1sTvwPlVpvGXXwTYDLf-4YF8vz5-b12y7K6el2ywimjEzSCCtJF8ER8FUKIqggtAOrUblgilE5cl4iSFYOyl5UJXWFLyHPGgrF-zutzcS0f7Ux9b25_3_cfkDFfxRoA
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICAMechS57222.2022.10003347
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1665463805
9781665463805
EISSN 2325-0690
EndPage 63
ExternalDocumentID 10003347
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i119t-91e03a3ed7fcef9b127f5f28c1a815cf972bde9d31ffaacef6f5b88efdd06f8a3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:14:41 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-91e03a3ed7fcef9b127f5f28c1a815cf972bde9d31ffaacef6f5b88efdd06f8a3
PageCount 5
ParticipantIDs ieee_primary_10003347
PublicationCentury 2000
PublicationDate 2022-Dec.-17
PublicationDateYYYYMMDD 2022-12-17
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-Dec.-17
  day: 17
PublicationDecade 2020
PublicationTitle International Conference on Advanced Mechatronic Systems
PublicationTitleAbbrev ICAMechS
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001950880
Score 1.8340309
Snippet Empty-dish recycling robot is an effective product to solve the labor shortage problem in food service. A key research point is to design a fast and accurate...
SourceID ieee
SourceType Publisher
StartPage 59
SubjectTerms Convolution
Deep learning
Empty-dish recycling robot
Mechatronics
Neck
Object detection
Proposals
Recycling
YOLO-GG
Title YOLO-GG: a slight object detection model for empty-dish recycling robot
URI https://ieeexplore.ieee.org/document/10003347
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA62B9GLr4pvAnpNu7vZbHa9SbGtYltBC_VU8pjYInZL3R7qrzdJW18geAkhhBAyYSYzme8bhC6iUBmrEGNigDESGxqQVEsgEeVMyCiIladraneSVi--7bP-EqzusTAA4JPPoOq6_i9f52rmQmU1F4umNOYlVLL3bAHW-gqo-HqmwTo6X_Jo1m7qV21QwwfGrRG0rqBtViv8qKXiTUljC3VWm1hkkLxUZ4Wsqvdf_Iz_3uU2qnyh9vD9pz3aQWsw3kWb3wgH91DzqXvXJc3mJRbYPjCtX45z6SIxWEPhk7LG2NfGwfYti-F1UsyJHr0NsdWLcweifMbTXOZFBfUa14_1FlmWUiCjMMwKq9IgoIKC5kaByWQYccNMlKpQpCFTJuOR1JBpGhojhJ2SGCbTFIzWQWJSQfdReZyP4QBh0JmKHQkQNTROEutBM6As0JIHSigKh6jizmQwWbBlDFbHcfTH-DHacKJxKSIhP0HlYjqDU2voC3nmBfwB82an9g
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JSwMxFA5aweXiVnE3oNepk8lkFm9S7KJdBFuopzJJXmwRZ0qdHuqvN0lbq4LgJYQQQkjgfXkv7_seQlceEUobRN9RwJjjK-o6keTgeDRkCfdcX1i5pmYrqHX9-x7rzcnqlgsDADb5DEqma__yZSYmJlR2bWLRlPrhKlrTwO-zGV1rGVKxFU3ddXQ5V9K8rpdvmyAGTyzUMKidQd0s1vhRTcWCSWUbtRbbmOWQvJYmOS-Jj18Kjf_e5w4qLnl7-PELkXbRCqR7aOub5OA-qj63G22nWr3BCdZPTO2Z44ybWAyWkNu0rBTb6jhYv2YxvI3yqSOH7wOsLePU0Chf8DjjWV5E3cpdp1xz5sUUnCEhca6NGrg0oSBDJUDFnHihYsqLBEkiwoSKQ49LiCUlSiWJnhIoxqMIlJRuoKKEHqBCmqVwiDDIWPhGBogq6geB9qEZUOZKHroiERSOUNGcSX8008voL47j-I_xC7RR6zQb_Ua99XCCNs01mYQREp6iQj6ewJmG_Zyf28v-BO6zq0M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=International+Conference+on+Advanced+Mechatronic+Systems&rft.atitle=YOLO-GG%3A+a+slight+object+detection+model+for+empty-dish+recycling+robot&rft.au=Ge%2C+Yifei&rft.au=Yue%2C+Xuebin&rft.au=Meng%2C+Lin&rft.date=2022-12-17&rft.pub=IEEE&rft.eissn=2325-0690&rft.spage=59&rft.epage=63&rft_id=info:doi/10.1109%2FICAMechS57222.2022.10003347&rft.externalDocID=10003347