Synthetic Dataset for Quadcopter Detection Based on Frequency Propeller Signature

The use of computer graphic tools typically associated with video games is a popular method to generate synthetic datasets for the training of machine learning algorithms. For optical detection of quadcopters, realistic imagery needs to be generated for multiple models of drones, in multiple types o...

Full description

Saved in:
Bibliographic Details
Published in2023 IEEE Applied Imagery Pattern Recognition Workshop (AIPR) pp. 1 - 6
Main Authors Drouin, Marc-Antoine, Rainville, Marc-Andre, Picard, Michel, Stewart, Terrence C., Billy Djupkep Dizeu, Frank, Gagne, Guillaume
Format Conference Proceeding
LanguageEnglish
Published IEEE 27.09.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The use of computer graphic tools typically associated with video games is a popular method to generate synthetic datasets for the training of machine learning algorithms. For optical detection of quadcopters, realistic imagery needs to be generated for multiple models of drones, in multiple types of environments and different flight profiles. By itself, the effort required to generate those virtual environments can be as important as flying actual drones. This is particularly true when a physics-based engine is required to model the behavior of the propellers. While some appearance-based drone detection methods may not need accurate propeller behavior, other detection methods that exploit the high-frequency and/or temporal signatures generated by rotating propellers do require such accurate simulations. This is especially the case for neuromorphic sensors, which are generally sensitive to the unique high-frequency visual signal from the propeller blades. We propose a synthetic approach to acquire training datasets for neuromorphic sensors using a flexible hardware system built from quadcopter components. This system allows efficient acquisition of training sets for drone detection sensors based on the propeller's temporal and/or frequency signature.
AbstractList The use of computer graphic tools typically associated with video games is a popular method to generate synthetic datasets for the training of machine learning algorithms. For optical detection of quadcopters, realistic imagery needs to be generated for multiple models of drones, in multiple types of environments and different flight profiles. By itself, the effort required to generate those virtual environments can be as important as flying actual drones. This is particularly true when a physics-based engine is required to model the behavior of the propellers. While some appearance-based drone detection methods may not need accurate propeller behavior, other detection methods that exploit the high-frequency and/or temporal signatures generated by rotating propellers do require such accurate simulations. This is especially the case for neuromorphic sensors, which are generally sensitive to the unique high-frequency visual signal from the propeller blades. We propose a synthetic approach to acquire training datasets for neuromorphic sensors using a flexible hardware system built from quadcopter components. This system allows efficient acquisition of training sets for drone detection sensors based on the propeller's temporal and/or frequency signature.
Author Picard, Michel
Billy Djupkep Dizeu, Frank
Rainville, Marc-Andre
Gagne, Guillaume
Drouin, Marc-Antoine
Stewart, Terrence C.
Author_xml – sequence: 1
  givenname: Marc-Antoine
  surname: Drouin
  fullname: Drouin, Marc-Antoine
  email: marc-antoine.drouin@nrc-cnrc.gc.ca
  organization: National Research Council Canada,Ottawa,Canada
– sequence: 2
  givenname: Marc-Andre
  surname: Rainville
  fullname: Rainville, Marc-Andre
  email: marc-andre.rainville@nrc-cnrc.gc.ca
  organization: National Research Council Canada,Boucherville,Canada
– sequence: 3
  givenname: Michel
  surname: Picard
  fullname: Picard, Michel
  email: michel.picard@nrc-cnrc.gc.ca
  organization: National Research Council Canada,Ottawa,Canada
– sequence: 4
  givenname: Terrence C.
  surname: Stewart
  fullname: Stewart, Terrence C.
  email: terrence.stewart@nrc-cnrc.gc.ca
  organization: National Research Council Canada,Waterloo,Canada
– sequence: 5
  givenname: Frank
  surname: Billy Djupkep Dizeu
  fullname: Billy Djupkep Dizeu, Frank
  email: frankbilly.djupkepdizeu@nrc-cnrc.gc.ca
  organization: National Research Council Canada,Ottawa,Canada
– sequence: 6
  givenname: Guillaume
  surname: Gagne
  fullname: Gagne, Guillaume
  email: guillaume.gagne2@forces.gc.ca
  organization: Defence Research and Development Canada,Valcartier,Canada
BookMark eNo1kM1Kw0AUhUdRsK19A8F5gcS585PkLmtrtVCwtbouk-SORmISJ5NF396AujoHvsO3OFN20bQNMXYLIgYQeLfY7F4SYZSOpZAqBqG1SEx2xuaYYqaMUAaNTM_ZRColI5OAuWLTvv8UQmUgYcL2h1MTPihUBV_ZYHsK3LWe7wdbFm0XyPMVBSpC1Tb8fsQlH8va0_dATXHiO992VNfj7FC9NzYMnq7ZpbN1T_O_nLG39cPr8inaPj9ulottVAFgiBAKrSxpl6BEyFFrVFDkiXOOSlmi0NYaSsFYmzuBTjurszLXgkiqBHM1Yze_3oqIjp2vvqw_Hf8vUD_SHlPe
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/AIPR60534.2023.10440658
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISBN 9798350359527
EISSN 2332-5615
EndPage 6
ExternalDocumentID 10440658
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IM
6IN
AAJGR
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
JC5
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i119t-91c43ae4f69291b944931cb6fffed2d904aa5e715aabf09f4fa48db40ee2369b3
IEDL.DBID RIE
IngestDate Wed Sep 18 05:50:25 EDT 2024
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-91c43ae4f69291b944931cb6fffed2d904aa5e715aabf09f4fa48db40ee2369b3
PageCount 6
ParticipantIDs ieee_primary_10440658
PublicationCentury 2000
PublicationDate 2023-Sept.-27
PublicationDateYYYYMMDD 2023-09-27
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-Sept.-27
  day: 27
PublicationDecade 2020
PublicationTitle 2023 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)
PublicationTitleAbbrev AIPR
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0038121
Score 2.2822208
Snippet The use of computer graphic tools typically associated with video games is a popular method to generate synthetic datasets for the training of machine learning...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Drones
Event Camera
labeled training dataset
Machine Learning (ML)
neuromorphic camera
Neuromorphics
Propellers
Quadcopter
Quadrotors
Sensor systems
Synthetic data
Training
Uncrewed Aerial Systems (UAS)
Title Synthetic Dataset for Quadcopter Detection Based on Frequency Propeller Signature
URI https://ieeexplore.ieee.org/document/10440658
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA5uTz7Ny8Q7efC1s0nTSx7VOabg2JyDvY1cZQjdmO3D_PWepK2iIPgW0qYpJ5fvI_nOOQhdMapUmMosSHkoAyaIDjLNdZDSULl4IyL2IYWeRslwxh7n8bx2Vve-MMYYLz4zPVf0d_l6pUp3VAYrnDEHmS3USjmvnLWabReQh5JawEVCfn3zMH4Gqh65cxMa9ZqmP5KoeAwZdNCo6b2Sjrz1ykL21MevwIz__r091P1218PjLyDaRzsmP0Cdml_ievW-H6LJdJsD34OpgvuiAPgqMFBWPCmFVqs1GBj3TeGlWTm-hccaQ2GwqcTWW9eFu6qB16bL1yogaBfNBvcvd8OgTqkQLAnhBWxtikXCMJsALSKSM8YjomRirTWaah4yIWKTklgIaUNumRUs05KFxtAo4TI6Qu18lZtjhH2qaptEqaTQysRSZbE1QH9iBh9KxAnqOhMt1lXUjEVjndM_6s_Qrhspp8Wg6TlqF5vSXADgF_LSD_QnlAOq_g
link.rule.ids 310,311,783,787,792,793,799,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JTwIxFG4UD3rCBeNuD14HpzOdpUcVCSgQEEi4ka6GmAwEZw74632dRaOJibemM51OXpfvS_u99xC6oZ6UbiRiJ2KucCgnyokVU07kudLGG-FBHlKoPwg7U_o0C2als3ruC6O1zsVnummL-V2-WsrMHpXBCqfUQuY22gFiHYeFu1a18QL2eKSUcBGX3d51hy9A1n17cuL5zarxjzQqOYq062hQ9V-IR96aWSqa8uNXaMZ__-A-anw77OHhFxQdoC2dHKJ6yTBxuX7fj9BovEmA8cFkwS2eAoClGEgrHmVcyeUKTIxbOs3FWQm-h8cKQ6G9LuTWG9uFvayB18aL1yIkaANN24-Th45TJlVwFoSwFDY3SX2uqQmBGBHBKGU-kSI0xmjlKeZSzgMdkYBzYVxmqOE0VoK6Wnt-yIR_jGrJMtEnCOfJqk3oR8KDVjoQMg6MBgIUUPhQyE9Rw5poviriZswr65z9UX-NdjuTfm_e6w6ez9GeHTWrzPCiC1RL15m-BPhPxVU-6J-yPK5J
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+IEEE+Applied+Imagery+Pattern+Recognition+Workshop+%28AIPR%29&rft.atitle=Synthetic+Dataset+for+Quadcopter+Detection+Based+on+Frequency+Propeller+Signature&rft.au=Drouin%2C+Marc-Antoine&rft.au=Rainville%2C+Marc-Andre&rft.au=Picard%2C+Michel&rft.au=Stewart%2C+Terrence+C.&rft.date=2023-09-27&rft.pub=IEEE&rft.eissn=2332-5615&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FAIPR60534.2023.10440658&rft.externalDocID=10440658