Defect Detection for Printed Circuit Board Assembly Using Deep Learning

In many industrial applications, the number of defect samples is often insufficient for defect detection using conventional deep learning techniques. Also, the frequent change of PCBA board types on the product line introduces new defect types and adds a layer of challenge to the detection task cons...

Full description

Saved in:
Bibliographic Details
Published in2022 8th International Conference on Control Science and Systems Engineering (ICCSSE) pp. 85 - 89
Main Authors Ren, Jing, Gabbar, Hossam A., Huang, Xishi, Saberironaghi, Alireza
Format Conference Proceeding
LanguageEnglish
Published IEEE 14.07.2022
Subjects
Online AccessGet full text
DOI10.1109/ICCSSE55346.2022.10079777

Cover

Loading…
Abstract In many industrial applications, the number of defect samples is often insufficient for defect detection using conventional deep learning techniques. Also, the frequent change of PCBA board types on the product line introduces new defect types and adds a layer of challenge to the detection task considered in this paper. We propose a deep learning algorithm that targets learning patterns from various defect types with unbalanced training samples in the PCBA manufacturing product lines. A novel batch sampling method is proposed for the deep learning method for PCBA defect detection. We have validated the proposed algorithm using normal and defective images. The results show that the proposed deep learning method can accurately identify defects in PBCA images and achieve an overall accuracy of 98%. This deep learning technique can also be extended to detect other surface-level defects.
AbstractList In many industrial applications, the number of defect samples is often insufficient for defect detection using conventional deep learning techniques. Also, the frequent change of PCBA board types on the product line introduces new defect types and adds a layer of challenge to the detection task considered in this paper. We propose a deep learning algorithm that targets learning patterns from various defect types with unbalanced training samples in the PCBA manufacturing product lines. A novel batch sampling method is proposed for the deep learning method for PCBA defect detection. We have validated the proposed algorithm using normal and defective images. The results show that the proposed deep learning method can accurately identify defects in PBCA images and achieve an overall accuracy of 98%. This deep learning technique can also be extended to detect other surface-level defects.
Author Gabbar, Hossam A.
Ren, Jing
Huang, Xishi
Saberironaghi, Alireza
Author_xml – sequence: 1
  givenname: Jing
  surname: Ren
  fullname: Ren, Jing
  email: jing.ren@ontariotechu.ca
  organization: Ontario Tech University,Dept. of Electrical and Computer Engineering,Oshawa,ON,Canada
– sequence: 2
  givenname: Hossam A.
  surname: Gabbar
  fullname: Gabbar, Hossam A.
  email: hossam.gaber@ontariotechu.ca
  organization: Faculty of Energy Systems and Nuclear Science, Engineering and Applied Science Ontario Tech University,Oshawa,ON,Canada
– sequence: 3
  givenname: Xishi
  surname: Huang
  fullname: Huang, Xishi
  email: Edward.Huang@rsopto.com
  organization: RS Opto Tech Ltd,Suzhou,Jiangsu,China
– sequence: 4
  givenname: Alireza
  surname: Saberironaghi
  fullname: Saberironaghi, Alireza
  email: Alireza.Saberironaghi@ontariotechu.ca
  organization: Ontario Tech University,Dept. of Electrical and Computer Engineering,Oshawa,ON,Canada
BookMark eNo1j0FLwzAYhiPowU3_gYf4A1bzJU3SHGc356CgMHceafNWAls70nrYv7egOz28h-eFZ8Zuu74DY88kMiLhXrZluduttVa5yaSQMiMhrLPW3rAZGaPzIidl7tlmhRbNyFcYJ8S-422f-GeK3YjAy5ianzjy196nwJfDgFN9vPD9ELvvScGZV_Cpm9YDu2v9ccDjP-ds_7b-Kt8X1cdmWy6rRSRy46IIQiqniAJQS-kgERoToJsGVEgvqBYttIGQzlvjVA0LpxUZBXKO1Jw9_f1GAIdziiefLodrnPoFUBJJ1A
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICCSSE55346.2022.10079777
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1665484136
9781665484138
EndPage 89
ExternalDocumentID 10079777
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-8d0239311deeb229e2edc6de5cce182a01b0fe56e029a7693be7e953163e19913
IEDL.DBID RIE
IngestDate Thu Jan 18 11:13:13 EST 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-8d0239311deeb229e2edc6de5cce182a01b0fe56e029a7693be7e953163e19913
PageCount 5
ParticipantIDs ieee_primary_10079777
PublicationCentury 2000
PublicationDate 2022-July-14
PublicationDateYYYYMMDD 2022-07-14
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-July-14
  day: 14
PublicationDecade 2020
PublicationTitle 2022 8th International Conference on Control Science and Systems Engineering (ICCSSE)
PublicationTitleAbbrev ICCSSE
PublicationYear 2022
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8104491
Snippet In many industrial applications, the number of defect samples is often insufficient for defect detection using conventional deep learning techniques. Also, the...
SourceID ieee
SourceType Publisher
StartPage 85
SubjectTerms computer vision
Control systems
Deep learning
defect detection
Manufacturing
PCBA
Printed circuits
resampling
sampling
Sampling methods
Task analysis
Training
Title Defect Detection for Printed Circuit Board Assembly Using Deep Learning
URI https://ieeexplore.ieee.org/document/10079777
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NSwMxEB1sD-JJxYrfRPC62yT70ebqtrUKFqEWeiubZCpF3UrZPeivN5NuFQXB2xKym2Uy4SWZN28ArlTEpcltEkhleECpnUHXcgyU8w4Uytrca-ndj9LhJL6bJtM6Wd3nwiCiJ59hSI8-lm-XpqKrsjZF9N1-pdOAhvOzdbLWNlzWupnt2ywbj_tJEsXEPZAy3PT_UTnFA8dgF0abIdd8keewKnVoPn6pMf77n_ag9Z2jxx6-0GcftrA4gJseEj2D9bD0FKuCuT2p60aiEJZli5WpFiW7Xjq3YBTufdUv78yzBtwr-MZqtdWnFkwG_cdsGNSlEoKFEKok-5KWmRAW3VFZKpRoTWoxMQbdCSLnQvM5JilyqXIqf6ixg8qtvzRCIj9Fh9AslgUeAZMOrrTgXeOWZhznqPM5IZ1w30qN4fwYWmSF2dtaDWO2McDJH-2nsEOTQfehIj6DZrmq8NwBeakv_AR-AiCxnYE
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFA06QX1SceK3EXxtl6RNt7zabW66DWEb7G20yVWG2o3RPuivNzfrFAXBt1KattwknCT3nHMJuVEBEzox0hNKMw-lnV7DMPCUHR3AlTGJ89LrD6LOOLyfyEkpVndaGABw5DPw8dLl8s1cF3hUVsOMvl2v1DfJlgX-UK7kWtvkunTOrHXjeDhsSRmEyD4Qwl-3-FE7xUFHe48M1h9dMUZe_CJPff3xy4_x33-1T6rfKj36-IU_B2QDskNy1wQkaNAm5I5klVG7KrWPoS2EofFsqYtZTm_ndmBQTPi-pa_v1PEGbBNY0NJv9blKxu3WKO54ZbEEb8a5yjHC6GbGuQG7WRYKBBgdGZBag91DJIyn7AlkBEyoBAsgplAHZWdgFADSn4IjUsnmGRwTKixgpZw1tJ2cYZhAmjwh1nH7rkhrxk5IFaMwXaz8MKbrAJz-cf-K7HRG_d601x08nJFd7Bg8HeXhOankywIuLKzn6aXrzE-SE6DO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+8th+International+Conference+on+Control+Science+and+Systems+Engineering+%28ICCSSE%29&rft.atitle=Defect+Detection+for+Printed+Circuit+Board+Assembly+Using+Deep+Learning&rft.au=Ren%2C+Jing&rft.au=Gabbar%2C+Hossam+A.&rft.au=Huang%2C+Xishi&rft.au=Saberironaghi%2C+Alireza&rft.date=2022-07-14&rft.pub=IEEE&rft.spage=85&rft.epage=89&rft_id=info:doi/10.1109%2FICCSSE55346.2022.10079777&rft.externalDocID=10079777