Defect Detection for Printed Circuit Board Assembly Using Deep Learning
In many industrial applications, the number of defect samples is often insufficient for defect detection using conventional deep learning techniques. Also, the frequent change of PCBA board types on the product line introduces new defect types and adds a layer of challenge to the detection task cons...
Saved in:
Published in | 2022 8th International Conference on Control Science and Systems Engineering (ICCSSE) pp. 85 - 89 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
14.07.2022
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/ICCSSE55346.2022.10079777 |
Cover
Loading…
Abstract | In many industrial applications, the number of defect samples is often insufficient for defect detection using conventional deep learning techniques. Also, the frequent change of PCBA board types on the product line introduces new defect types and adds a layer of challenge to the detection task considered in this paper. We propose a deep learning algorithm that targets learning patterns from various defect types with unbalanced training samples in the PCBA manufacturing product lines. A novel batch sampling method is proposed for the deep learning method for PCBA defect detection. We have validated the proposed algorithm using normal and defective images. The results show that the proposed deep learning method can accurately identify defects in PBCA images and achieve an overall accuracy of 98%. This deep learning technique can also be extended to detect other surface-level defects. |
---|---|
AbstractList | In many industrial applications, the number of defect samples is often insufficient for defect detection using conventional deep learning techniques. Also, the frequent change of PCBA board types on the product line introduces new defect types and adds a layer of challenge to the detection task considered in this paper. We propose a deep learning algorithm that targets learning patterns from various defect types with unbalanced training samples in the PCBA manufacturing product lines. A novel batch sampling method is proposed for the deep learning method for PCBA defect detection. We have validated the proposed algorithm using normal and defective images. The results show that the proposed deep learning method can accurately identify defects in PBCA images and achieve an overall accuracy of 98%. This deep learning technique can also be extended to detect other surface-level defects. |
Author | Gabbar, Hossam A. Ren, Jing Huang, Xishi Saberironaghi, Alireza |
Author_xml | – sequence: 1 givenname: Jing surname: Ren fullname: Ren, Jing email: jing.ren@ontariotechu.ca organization: Ontario Tech University,Dept. of Electrical and Computer Engineering,Oshawa,ON,Canada – sequence: 2 givenname: Hossam A. surname: Gabbar fullname: Gabbar, Hossam A. email: hossam.gaber@ontariotechu.ca organization: Faculty of Energy Systems and Nuclear Science, Engineering and Applied Science Ontario Tech University,Oshawa,ON,Canada – sequence: 3 givenname: Xishi surname: Huang fullname: Huang, Xishi email: Edward.Huang@rsopto.com organization: RS Opto Tech Ltd,Suzhou,Jiangsu,China – sequence: 4 givenname: Alireza surname: Saberironaghi fullname: Saberironaghi, Alireza email: Alireza.Saberironaghi@ontariotechu.ca organization: Ontario Tech University,Dept. of Electrical and Computer Engineering,Oshawa,ON,Canada |
BookMark | eNo1j0FLwzAYhiPowU3_gYf4A1bzJU3SHGc356CgMHceafNWAls70nrYv7egOz28h-eFZ8Zuu74DY88kMiLhXrZluduttVa5yaSQMiMhrLPW3rAZGaPzIidl7tlmhRbNyFcYJ8S-422f-GeK3YjAy5ianzjy196nwJfDgFN9vPD9ELvvScGZV_Cpm9YDu2v9ccDjP-ds_7b-Kt8X1cdmWy6rRSRy46IIQiqniAJQS-kgERoToJsGVEgvqBYttIGQzlvjVA0LpxUZBXKO1Jw9_f1GAIdziiefLodrnPoFUBJJ1A |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICCSSE55346.2022.10079777 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 1665484136 9781665484138 |
EndPage | 89 |
ExternalDocumentID | 10079777 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i119t-8d0239311deeb229e2edc6de5cce182a01b0fe56e029a7693be7e953163e19913 |
IEDL.DBID | RIE |
IngestDate | Thu Jan 18 11:13:13 EST 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i119t-8d0239311deeb229e2edc6de5cce182a01b0fe56e029a7693be7e953163e19913 |
PageCount | 5 |
ParticipantIDs | ieee_primary_10079777 |
PublicationCentury | 2000 |
PublicationDate | 2022-July-14 |
PublicationDateYYYYMMDD | 2022-07-14 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-July-14 day: 14 |
PublicationDecade | 2020 |
PublicationTitle | 2022 8th International Conference on Control Science and Systems Engineering (ICCSSE) |
PublicationTitleAbbrev | ICCSSE |
PublicationYear | 2022 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.8104491 |
Snippet | In many industrial applications, the number of defect samples is often insufficient for defect detection using conventional deep learning techniques. Also, the... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 85 |
SubjectTerms | computer vision Control systems Deep learning defect detection Manufacturing PCBA Printed circuits resampling sampling Sampling methods Task analysis Training |
Title | Defect Detection for Printed Circuit Board Assembly Using Deep Learning |
URI | https://ieeexplore.ieee.org/document/10079777 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NSwMxEB1sD-JJxYrfRPC62yT70ebqtrUKFqEWeiubZCpF3UrZPeivN5NuFQXB2xKym2Uy4SWZN28ArlTEpcltEkhleECpnUHXcgyU8w4Uytrca-ndj9LhJL6bJtM6Wd3nwiCiJ59hSI8-lm-XpqKrsjZF9N1-pdOAhvOzdbLWNlzWupnt2ywbj_tJEsXEPZAy3PT_UTnFA8dgF0abIdd8keewKnVoPn6pMf77n_ag9Z2jxx6-0GcftrA4gJseEj2D9bD0FKuCuT2p60aiEJZli5WpFiW7Xjq3YBTufdUv78yzBtwr-MZqtdWnFkwG_cdsGNSlEoKFEKok-5KWmRAW3VFZKpRoTWoxMQbdCSLnQvM5JilyqXIqf6ixg8qtvzRCIj9Fh9AslgUeAZMOrrTgXeOWZhznqPM5IZ1w30qN4fwYWmSF2dtaDWO2McDJH-2nsEOTQfehIj6DZrmq8NwBeakv_AR-AiCxnYE |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFA06QX1SceK3EXxtl6RNt7zabW66DWEb7G20yVWG2o3RPuivNzfrFAXBt1KattwknCT3nHMJuVEBEzox0hNKMw-lnV7DMPCUHR3AlTGJ89LrD6LOOLyfyEkpVndaGABw5DPw8dLl8s1cF3hUVsOMvl2v1DfJlgX-UK7kWtvkunTOrHXjeDhsSRmEyD4Qwl-3-FE7xUFHe48M1h9dMUZe_CJPff3xy4_x33-1T6rfKj36-IU_B2QDskNy1wQkaNAm5I5klVG7KrWPoS2EofFsqYtZTm_ndmBQTPi-pa_v1PEGbBNY0NJv9blKxu3WKO54ZbEEb8a5yjHC6GbGuQG7WRYKBBgdGZBag91DJIyn7AlkBEyoBAsgplAHZWdgFADSn4IjUsnmGRwTKixgpZw1tJ2cYZhAmjwh1nH7rkhrxk5IFaMwXaz8MKbrAJz-cf-K7HRG_d601x08nJFd7Bg8HeXhOankywIuLKzn6aXrzE-SE6DO |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2022+8th+International+Conference+on+Control+Science+and+Systems+Engineering+%28ICCSSE%29&rft.atitle=Defect+Detection+for+Printed+Circuit+Board+Assembly+Using+Deep+Learning&rft.au=Ren%2C+Jing&rft.au=Gabbar%2C+Hossam+A.&rft.au=Huang%2C+Xishi&rft.au=Saberironaghi%2C+Alireza&rft.date=2022-07-14&rft.pub=IEEE&rft.spage=85&rft.epage=89&rft_id=info:doi/10.1109%2FICCSSE55346.2022.10079777&rft.externalDocID=10079777 |