Porosity Prediction of 3D Printed Components Using U-Net and Its Variants

Additive manufacturing (AM) or 3D printing (3DP) technologies witnessed revolutionary growth in the manufacturing sector. Parts produced with metal AM techniques, especially Laser Powder Bed Fusion (LPBF), are often prone to porosity issues. The presence of pores leads to harmful effects such as cra...

Full description

Saved in:
Bibliographic Details
Published in2024 3rd International Conference on Artificial Intelligence For Internet of Things (AIIoT) pp. 1 - 6
Main Authors Manoj, Aluri, Ahmed, Khaled R., Omar, Ghada
Format Conference Proceeding
LanguageEnglish
Published IEEE 03.05.2024
Subjects
Online AccessGet full text
DOI10.1109/AIIoT58432.2024.10574563

Cover

Abstract Additive manufacturing (AM) or 3D printing (3DP) technologies witnessed revolutionary growth in the manufacturing sector. Parts produced with metal AM techniques, especially Laser Powder Bed Fusion (LPBF), are often prone to porosity issues. The presence of pores leads to harmful effects such as crack formation and, eventually, premature failure of the component. Consequently, research in defect detection and pore prediction attracted substantial attention. Utilizing image-based porosity detection in preexisting systems is a simple, effective, and cost-efficient approach for final part inspection. This paper investigates the possibility of predicting porosity using U-Net and its novel network architectures RU-Net and RAU-Net, on an X-ray computed tomography (XCT) image dataset. RAU-Net outperforms RU-Net and U-Net in detecting more than 90 % of actual pores while retaining 95 \% precision. While RU-Net and U-Net required additional training, RAU-Net achieved high performance in only 50 epochs, demonstrating its data efficiency and convergence. Due to its shorter training period also leading to lower computational overhead, RAU-Net is suited for practical high throughput, low latency applications. Particularly in timesensitive applications, RAU-Net can enable more widespread adoption of dense prediction networks.
AbstractList Additive manufacturing (AM) or 3D printing (3DP) technologies witnessed revolutionary growth in the manufacturing sector. Parts produced with metal AM techniques, especially Laser Powder Bed Fusion (LPBF), are often prone to porosity issues. The presence of pores leads to harmful effects such as crack formation and, eventually, premature failure of the component. Consequently, research in defect detection and pore prediction attracted substantial attention. Utilizing image-based porosity detection in preexisting systems is a simple, effective, and cost-efficient approach for final part inspection. This paper investigates the possibility of predicting porosity using U-Net and its novel network architectures RU-Net and RAU-Net, on an X-ray computed tomography (XCT) image dataset. RAU-Net outperforms RU-Net and U-Net in detecting more than 90 % of actual pores while retaining 95 \% precision. While RU-Net and U-Net required additional training, RAU-Net achieved high performance in only 50 epochs, demonstrating its data efficiency and convergence. Due to its shorter training period also leading to lower computational overhead, RAU-Net is suited for practical high throughput, low latency applications. Particularly in timesensitive applications, RAU-Net can enable more widespread adoption of dense prediction networks.
Author Omar, Ghada
Manoj, Aluri
Ahmed, Khaled R.
Author_xml – sequence: 1
  givenname: Aluri
  surname: Manoj
  fullname: Manoj, Aluri
  email: manoj.aluri@siu.edu
  organization: Southern Illinois University,School of Computing,Carbondale,IL,USA
– sequence: 2
  givenname: Khaled R.
  surname: Ahmed
  fullname: Ahmed, Khaled R.
  email: khaled.ahmed@siu.edu
  organization: Southern Illinois University,School of Computing,Carbondale,IL,USA
– sequence: 3
  givenname: Ghada
  surname: Omar
  fullname: Omar, Ghada
  email: ghada.omar@siu.edu
  organization: Southern Illinois University,School of Mathematics and Statistics,Carbondale,IL,USA
BookMark eNo1j8tqwzAURFVoFm2aP8hCP2BXT0taBvclCG0WcbdBtnSLoJGCrU3-voK2q4EzcJi5R7cpp4AQpqSllJjHnbX5KLXgrGWEiZYSqYTs-A3aGGU0l4QrRhm5Q_aQ57zEcsWHOfg4lZgTzoD5UwUxleBxn8-Xqk9lwcMS0xcemvdQsEse28o-3RxdLR_QCtz3EjZ_uUbDy_Oxf2v2H6-23-2bSKkpjR6dn8B44KNWo9SMeeKI6ohXk6QCAhOGdHWtAgHeg6zLKSg_CcFBO8bXaPvrjSGE02WOZzdfT_8P-Q9v90sM
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/AIIoT58432.2024.10574563
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350372120
EndPage 6
ExternalDocumentID 10574563
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-8badcf9df3b87b5822d0a0760d7c514fe249067457f4fddf55741f7dc443f8a23
IEDL.DBID RIE
IngestDate Wed Jul 10 10:27:43 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-8badcf9df3b87b5822d0a0760d7c514fe249067457f4fddf55741f7dc443f8a23
PageCount 6
ParticipantIDs ieee_primary_10574563
PublicationCentury 2000
PublicationDate 2024-May-3
PublicationDateYYYYMMDD 2024-05-03
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-May-3
  day: 03
PublicationDecade 2020
PublicationTitle 2024 3rd International Conference on Artificial Intelligence For Internet of Things (AIIoT)
PublicationTitleAbbrev AIIoT
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8784034
Snippet Additive manufacturing (AM) or 3D printing (3DP) technologies witnessed revolutionary growth in the manufacturing sector. Parts produced with metal AM...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms additive manufacturing
and Object segmentation
Degradation
Porosity Prediction
Powders
Predictive models
Resistance
Solid modeling
Three-dimensional displays
Training
Title Porosity Prediction of 3D Printed Components Using U-Net and Its Variants
URI https://ieeexplore.ieee.org/document/10574563
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NS8NAEF20J08qVvxmD16Tttnd7O5R1NJ4KD200lvZTxAhkZIe9Nc7s20UBcFbmAR2mdnwMpn3Zgi51ZobWYoiYxFSFF7aMlPRyqwoFOQ-wlppEst3Wk4W_GkpljuxetLChBAS-SzkeJlq-b5xG_xVNsCZtAD4bJ_swznbirU6ds5QD-6qqpkDoDIUWBU87x7_MTgl4cb4kEy7Fbd0kdd809rcffxqxvjvLR2R_rdEj86-wOeY7IX6hFSzZo0krHe4hQUYdDptImUPYMDGEJ7i-9_UyJ6giS1AF9k0tNTUnlZge4bUGZkxfbIYP87vJ9luVkL2MhrpNlPWeBe1j8wqaQXAvh8arLp56eCbKAZIswCYuJCRR--jgG2PovSOcxaVKdgp6dWw_BmhLMjSBR6NDJoHCJ_SMgplDJdOWuXOSR_9sHrbtsNYdS64-MN-SQ4wHIklyK5Ir11vwjUgeWtvUgQ_AZ4KnnE
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA5aD3pSseLbHLzutt0km-QoPuhqXXpopbeSJ4iwK2V70F_vJO0qCoK3ZZYlYQb2y2S-bwahKymp4jnLEuIhRaG5zhPhNU-yTEDuw7TmKrJ8y3w4pQ8zNluL1aMWxjkXyWcuDY-xlm9rswxXZb0wkxYAn2yiLQB-ylZyrZaf05e966KoJwCpJEisMpq2H_wYnRKR434Xle2aK8LIa7psdGo-frVj_Pem9lD3W6SHx1_ws482XHWAinG9CDSsd3gVSjDB7bj2mNyCIbSGsDj8Aeoq8Cdw5AvgaVK6BqvK4gJsz5A8B25MF03v7yY3w2Q9LSF5GQxkkwitrPHSeqIF1wyA3_ZVqLtZbuBU5B0kWgBNlHFPvbWewbYHnltDKfFCZeQQdSpY_ghh4nhuHPWKO0kdBFBI7plQinLDtTDHqBv8MH9bNcSYty44-cN-ibaHk6fRfFSUj6doJ4QmcgbJGeo0i6U7B1xv9EWM5icadqG-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2024+3rd+International+Conference+on+Artificial+Intelligence+For+Internet+of+Things+%28AIIoT%29&rft.atitle=Porosity+Prediction+of+3D+Printed+Components+Using+U-Net+and+Its+Variants&rft.au=Manoj%2C+Aluri&rft.au=Ahmed%2C+Khaled+R.&rft.au=Omar%2C+Ghada&rft.date=2024-05-03&rft.pub=IEEE&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FAIIoT58432.2024.10574563&rft.externalDocID=10574563