Efficient and Accurate Neural Fingerprints Obtained via Mean Curve Length of High Dimensional Model Representation of EEG Signals
In this study, we propose and evaluate a feature extraction methodology for the purpose of EEG-based person recognition. To this end, the mean curve length (MCL) was employed subsequent to the representation of EEG signals in an orthogonal geometry through High Dimensional Model Representation (HDMR...
Saved in:
Published in | 2023 31st European Signal Processing Conference (EUSIPCO) pp. 1175 - 1179 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
EURASIP
04.09.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2076-1465 |
DOI | 10.23919/EUSIPCO58844.2023.10290000 |
Cover
Abstract | In this study, we propose and evaluate a feature extraction methodology for the purpose of EEG-based person recognition. To this end, the mean curve length (MCL) was employed subsequent to the representation of EEG signals in an orthogonal geometry through High Dimensional Model Representation (HDMR). To analyze the effectiveness of the methodology, we executed it on a standard publicly available EEG dataset containing 109 subjects and acquired from 64 channels for eyes-open (EO) and eyes-closed (EC) resting-state conditions. The proposed feature was evaluated by comparing it to MCL, beta, and gamma band activities. According to the performance results, applying MCL to the output of the HDMR instead of raw data provides superior performances for identification and authentication. The attained results promise a novel simple, fast, and accurate biometric recognition scheme, named HDMRMCL. |
---|---|
AbstractList | In this study, we propose and evaluate a feature extraction methodology for the purpose of EEG-based person recognition. To this end, the mean curve length (MCL) was employed subsequent to the representation of EEG signals in an orthogonal geometry through High Dimensional Model Representation (HDMR). To analyze the effectiveness of the methodology, we executed it on a standard publicly available EEG dataset containing 109 subjects and acquired from 64 channels for eyes-open (EO) and eyes-closed (EC) resting-state conditions. The proposed feature was evaluated by comparing it to MCL, beta, and gamma band activities. According to the performance results, applying MCL to the output of the HDMR instead of raw data provides superior performances for identification and authentication. The attained results promise a novel simple, fast, and accurate biometric recognition scheme, named HDMRMCL. |
Author | Ozkurt, Tolga Esat Ozay, Evrim Korkmaz |
Author_xml | – sequence: 1 givenname: Evrim Korkmaz surname: Ozay fullname: Ozay, Evrim Korkmaz email: evrimozay@beykent.edu.tr organization: Beykent University,Software Engineering Department,Istanbul,Turkey – sequence: 2 givenname: Tolga Esat surname: Ozkurt fullname: Ozkurt, Tolga Esat email: ozkurt@metu.edu.tr organization: Middle East Technical University,Department of Health Informatics,Ankara,Turkey |
BookMark | eNo1kE9PwzAMxQMCiTH2DThE4tziJG2aHKfS_ZE2hhg7T1nrdJG2dGq7SRz55gQBvvws6z0_2ffkxjceCXliEHOhmX4uNuv5W75KlUqSmAMXMQOuIdQVGelM6UQmqRYS4JoMOGQyYolM78io69wOuAKVMZAD8lVY60qHvqfGV3RclufW9EhfMfBAJ87X2J5a5_uOrna9cR4renGGLtF4mp_bC9IF-rrf08bSmav39MUd0Xeu8cG_bCo80Hc8tdiFDNOH8Y-wKKZ07eog6R7IrQ3A0R-HZDMpPvJZtFhN5_l4ETnGdB8pBYyBkqlNmUaZCgaG81JIDiBLZLxKNDCsMhvazCKATrOssqW0oLUUYkgef_c6RNyGk46m_dz-f018A8L0ZCw |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.23919/EUSIPCO58844.2023.10290000 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9789464593600 9464593601 |
EISSN | 2076-1465 |
EndPage | 1179 |
ExternalDocumentID | 10290000 |
Genre | orig-research |
GroupedDBID | 6IE 6IL ALMA_UNASSIGNED_HOLDINGS CBEJK RIE RIL |
ID | FETCH-LOGICAL-i119t-880110865f519e65310a22c362006ce12d4901ed7f12d7fe009577dfc6f099633 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:36:18 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i119t-880110865f519e65310a22c362006ce12d4901ed7f12d7fe009577dfc6f099633 |
PageCount | 5 |
ParticipantIDs | ieee_primary_10290000 |
PublicationCentury | 2000 |
PublicationDate | 2023-Sept.-4 |
PublicationDateYYYYMMDD | 2023-09-04 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-Sept.-4 day: 04 |
PublicationDecade | 2020 |
PublicationTitle | 2023 31st European Signal Processing Conference (EUSIPCO) |
PublicationTitleAbbrev | EUSIPCO |
PublicationYear | 2023 |
Publisher | EURASIP |
Publisher_xml | – name: EURASIP |
SSID | ssib028087106 ssib025355106 |
Score | 1.8459841 |
Snippet | In this study, we propose and evaluate a feature extraction methodology for the purpose of EEG-based person recognition. To this end, the mean curve length... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1175 |
SubjectTerms | Authentication biometrics Brain modeling EEG Europe Feature extraction Fingerprint recognition Geometry HDMR identification mean curve length resting-state Signal processing |
Title | Efficient and Accurate Neural Fingerprints Obtained via Mean Curve Length of High Dimensional Model Representation of EEG Signals |
URI | https://ieeexplore.ieee.org/document/10290000 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60B_GkYsU3A3pNTZNN0hylplaxD6yF3somO9FiSaUmPXjznzuzaX2B4G3Ii2UzszM7O983QpwHdurZsY4tciYNSyo2KTdgCT26Ry7NYzRyp-u3h_J25I2WYHWDhUFEU3yGNRbNWb6eJQWnysjCHe5xSTv0ddKzEqy1Uh7HI8_57cjQadi0F7D9DXFmyp3DengRDQc3_WaPsZmcTnHc2uqLP3qrGNfS2hLd1aDKipLnWpHHteTtF1_jv0e9LapfKD7of_qnHbGG2a54jwxnBL0BKtNwmSQFk0UAk3SoKbRMlo-Tffkr9GLOG6CGxURBB1UGzWK-QLjD7DF_glkKXCUCV9wgoCT3AG6tNoV7U167RDVl_GAUXcNg8shkzVUxbEUPzba1bMNgTer1MLfIwhkr4HspRXvok9HaynES8nxksQnWHS0pqEAdpCQGKXLUFgQ6TfyUwk_fdfdEJZtluC_A921HoVaei1Iq2QhtJUNNi0aMkpZs90BUef7GLyXTxng1dYd_XD8Sm_wbTc2XPBaVfF7gCQUJeXxqlOMD9j24Ow |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5EQT2pWPHtgF5T02STNEepqVX7QlvorWyyEy1KKjXpwZv_3Jlt6wsEb0teLJud_WZn5_tGiLPATj071rFFYFK1pGKTcgNuoUf3CNI8ZiO32n6jL28G3mBOVjdcGEQ0yWdY5qY5y9fjpOBQGVm4wzUuaYe-QsAvvRldazF9HI-w89uhoVO1aTdg-6vi1CQ8h5XwPOrfX3drHWZnckDFccuLb_6ormLApb4h2otuzXJKnspFHpeTt1-Kjf_u96YoffH4oPuJUFtiCbNt8R4Z1Qh6A1Sm4SJJCpaLAJbpUM9QN3E-Dvflr9CJOXKAGqYjBS1UGdSKyRShidlD_gjjFDhPBC65RMBM3gO4uNoz3JkE2zmvKeMHo-gK7kcPLNdcEv161Ks1rHkhBmtUqYS5RTbObAHfS8nfQ5_M1laOkxD2kc0mWHG0JLcCdZBSM0iR_bYg0Gnip-SA-q67I5azcYa7AnzfdhRq5bkopZLV0FYy1LRsxChp0Xb3RInHb_gy09oYLoZu_4_rJ2Kt0Ws1h83r9u2BWOdfajLA5KFYzicFHpHLkMfHZqJ8AMs5u4g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+31st+European+Signal+Processing+Conference+%28EUSIPCO%29&rft.atitle=Efficient+and+Accurate+Neural+Fingerprints+Obtained+via+Mean+Curve+Length+of+High+Dimensional+Model+Representation+of+EEG+Signals&rft.au=Ozay%2C+Evrim+Korkmaz&rft.au=Ozkurt%2C+Tolga+Esat&rft.date=2023-09-04&rft.pub=EURASIP&rft.eissn=2076-1465&rft.spage=1175&rft.epage=1179&rft_id=info:doi/10.23919%2FEUSIPCO58844.2023.10290000&rft.externalDocID=10290000 |