Efficient and Accurate Neural Fingerprints Obtained via Mean Curve Length of High Dimensional Model Representation of EEG Signals

In this study, we propose and evaluate a feature extraction methodology for the purpose of EEG-based person recognition. To this end, the mean curve length (MCL) was employed subsequent to the representation of EEG signals in an orthogonal geometry through High Dimensional Model Representation (HDMR...

Full description

Saved in:
Bibliographic Details
Published in2023 31st European Signal Processing Conference (EUSIPCO) pp. 1175 - 1179
Main Authors Ozay, Evrim Korkmaz, Ozkurt, Tolga Esat
Format Conference Proceeding
LanguageEnglish
Published EURASIP 04.09.2023
Subjects
Online AccessGet full text
ISSN2076-1465
DOI10.23919/EUSIPCO58844.2023.10290000

Cover

Abstract In this study, we propose and evaluate a feature extraction methodology for the purpose of EEG-based person recognition. To this end, the mean curve length (MCL) was employed subsequent to the representation of EEG signals in an orthogonal geometry through High Dimensional Model Representation (HDMR). To analyze the effectiveness of the methodology, we executed it on a standard publicly available EEG dataset containing 109 subjects and acquired from 64 channels for eyes-open (EO) and eyes-closed (EC) resting-state conditions. The proposed feature was evaluated by comparing it to MCL, beta, and gamma band activities. According to the performance results, applying MCL to the output of the HDMR instead of raw data provides superior performances for identification and authentication. The attained results promise a novel simple, fast, and accurate biometric recognition scheme, named HDMRMCL.
AbstractList In this study, we propose and evaluate a feature extraction methodology for the purpose of EEG-based person recognition. To this end, the mean curve length (MCL) was employed subsequent to the representation of EEG signals in an orthogonal geometry through High Dimensional Model Representation (HDMR). To analyze the effectiveness of the methodology, we executed it on a standard publicly available EEG dataset containing 109 subjects and acquired from 64 channels for eyes-open (EO) and eyes-closed (EC) resting-state conditions. The proposed feature was evaluated by comparing it to MCL, beta, and gamma band activities. According to the performance results, applying MCL to the output of the HDMR instead of raw data provides superior performances for identification and authentication. The attained results promise a novel simple, fast, and accurate biometric recognition scheme, named HDMRMCL.
Author Ozkurt, Tolga Esat
Ozay, Evrim Korkmaz
Author_xml – sequence: 1
  givenname: Evrim Korkmaz
  surname: Ozay
  fullname: Ozay, Evrim Korkmaz
  email: evrimozay@beykent.edu.tr
  organization: Beykent University,Software Engineering Department,Istanbul,Turkey
– sequence: 2
  givenname: Tolga Esat
  surname: Ozkurt
  fullname: Ozkurt, Tolga Esat
  email: ozkurt@metu.edu.tr
  organization: Middle East Technical University,Department of Health Informatics,Ankara,Turkey
BookMark eNo1kE9PwzAMxQMCiTH2DThE4tziJG2aHKfS_ZE2hhg7T1nrdJG2dGq7SRz55gQBvvws6z0_2ffkxjceCXliEHOhmX4uNuv5W75KlUqSmAMXMQOuIdQVGelM6UQmqRYS4JoMOGQyYolM78io69wOuAKVMZAD8lVY60qHvqfGV3RclufW9EhfMfBAJ87X2J5a5_uOrna9cR4renGGLtF4mp_bC9IF-rrf08bSmav39MUd0Xeu8cG_bCo80Hc8tdiFDNOH8Y-wKKZ07eog6R7IrQ3A0R-HZDMpPvJZtFhN5_l4ETnGdB8pBYyBkqlNmUaZCgaG81JIDiBLZLxKNDCsMhvazCKATrOssqW0oLUUYkgef_c6RNyGk46m_dz-f018A8L0ZCw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.23919/EUSIPCO58844.2023.10290000
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9789464593600
9464593601
EISSN 2076-1465
EndPage 1179
ExternalDocumentID 10290000
Genre orig-research
GroupedDBID 6IE
6IL
ALMA_UNASSIGNED_HOLDINGS
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-880110865f519e65310a22c362006ce12d4901ed7f12d7fe009577dfc6f099633
IEDL.DBID RIE
IngestDate Wed Aug 27 02:36:18 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-880110865f519e65310a22c362006ce12d4901ed7f12d7fe009577dfc6f099633
PageCount 5
ParticipantIDs ieee_primary_10290000
PublicationCentury 2000
PublicationDate 2023-Sept.-4
PublicationDateYYYYMMDD 2023-09-04
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-Sept.-4
  day: 04
PublicationDecade 2020
PublicationTitle 2023 31st European Signal Processing Conference (EUSIPCO)
PublicationTitleAbbrev EUSIPCO
PublicationYear 2023
Publisher EURASIP
Publisher_xml – name: EURASIP
SSID ssib028087106
ssib025355106
Score 1.8459841
Snippet In this study, we propose and evaluate a feature extraction methodology for the purpose of EEG-based person recognition. To this end, the mean curve length...
SourceID ieee
SourceType Publisher
StartPage 1175
SubjectTerms Authentication
biometrics
Brain modeling
EEG
Europe
Feature extraction
Fingerprint recognition
Geometry
HDMR
identification
mean curve length
resting-state
Signal processing
Title Efficient and Accurate Neural Fingerprints Obtained via Mean Curve Length of High Dimensional Model Representation of EEG Signals
URI https://ieeexplore.ieee.org/document/10290000
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60B_GkYsU3A3pNTZNN0hylplaxD6yF3somO9FiSaUmPXjznzuzaX2B4G3Ii2UzszM7O983QpwHdurZsY4tciYNSyo2KTdgCT26Ry7NYzRyp-u3h_J25I2WYHWDhUFEU3yGNRbNWb6eJQWnysjCHe5xSTv0ddKzEqy1Uh7HI8_57cjQadi0F7D9DXFmyp3DengRDQc3_WaPsZmcTnHc2uqLP3qrGNfS2hLd1aDKipLnWpHHteTtF1_jv0e9LapfKD7of_qnHbGG2a54jwxnBL0BKtNwmSQFk0UAk3SoKbRMlo-Tffkr9GLOG6CGxURBB1UGzWK-QLjD7DF_glkKXCUCV9wgoCT3AG6tNoV7U167RDVl_GAUXcNg8shkzVUxbEUPzba1bMNgTer1MLfIwhkr4HspRXvok9HaynES8nxksQnWHS0pqEAdpCQGKXLUFgQ6TfyUwk_fdfdEJZtluC_A921HoVaei1Iq2QhtJUNNi0aMkpZs90BUef7GLyXTxng1dYd_XD8Sm_wbTc2XPBaVfF7gCQUJeXxqlOMD9j24Ow
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5EQT2pWPHtgF5T02STNEepqVX7QlvorWyyEy1KKjXpwZv_3Jlt6wsEb0teLJud_WZn5_tGiLPATj071rFFYFK1pGKTcgNuoUf3CNI8ZiO32n6jL28G3mBOVjdcGEQ0yWdY5qY5y9fjpOBQGVm4wzUuaYe-QsAvvRldazF9HI-w89uhoVO1aTdg-6vi1CQ8h5XwPOrfX3drHWZnckDFccuLb_6ormLApb4h2otuzXJKnspFHpeTt1-Kjf_u96YoffH4oPuJUFtiCbNt8R4Z1Qh6A1Sm4SJJCpaLAJbpUM9QN3E-Dvflr9CJOXKAGqYjBS1UGdSKyRShidlD_gjjFDhPBC65RMBM3gO4uNoz3JkE2zmvKeMHo-gK7kcPLNdcEv161Ks1rHkhBmtUqYS5RTbObAHfS8nfQ5_M1laOkxD2kc0mWHG0JLcCdZBSM0iR_bYg0Gnip-SA-q67I5azcYa7AnzfdhRq5bkopZLV0FYy1LRsxChp0Xb3RInHb_gy09oYLoZu_4_rJ2Kt0Ws1h83r9u2BWOdfajLA5KFYzicFHpHLkMfHZqJ8AMs5u4g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+31st+European+Signal+Processing+Conference+%28EUSIPCO%29&rft.atitle=Efficient+and+Accurate+Neural+Fingerprints+Obtained+via+Mean+Curve+Length+of+High+Dimensional+Model+Representation+of+EEG+Signals&rft.au=Ozay%2C+Evrim+Korkmaz&rft.au=Ozkurt%2C+Tolga+Esat&rft.date=2023-09-04&rft.pub=EURASIP&rft.eissn=2076-1465&rft.spage=1175&rft.epage=1179&rft_id=info:doi/10.23919%2FEUSIPCO58844.2023.10290000&rft.externalDocID=10290000