Classification of Dementia EEG Signals by Using Time-Frequency Images for Deep Learning
Dementia is a prevalent neurological disorder that impairs cognitive functions and significantly diminishes the quality of life. In this research, a deep learning method is introduced for detecting and monitoring Alzheimer's Dementia (AD) by analyzing Electroencephalography (EEG) signals. To ac...
Saved in:
Published in | Innovations in Intelligent Systems and Applications Conference (Online) pp. 1 - 6 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
11.10.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Dementia is a prevalent neurological disorder that impairs cognitive functions and significantly diminishes the quality of life. In this research, a deep learning method is introduced for detecting and monitoring Alzheimer's Dementia (AD) by analyzing Electroencephalography (EEG) signals. To accomplish this, a signal decomposition technique known as Intrinsic Time Scale Decomposition (ITD) is employed to classify EEG segments obtained from both AD patients and control subjects. The analysis specifically concentrates on 5-second EEG segments, utilizing ITD to extract Proper Rotation Components (PRCs) from these segments. The PRCs are subsequently transformed into Time-Frequency (TF) images using the Short-Time Fourier Transform (STFT) spectrogram. These TF images serve as training data for a 2-Dimensional Convolutional Neural Network (2D CNN). The proposed approach is compared with the classification of the spectrogram of 5-second EEG segments using the same CNN architecture. The experimental results conclusively demonstrate the superior classification performance of the ITD-based approach when compared to the utilization of raw EEG signals. |
---|---|
AbstractList | Dementia is a prevalent neurological disorder that impairs cognitive functions and significantly diminishes the quality of life. In this research, a deep learning method is introduced for detecting and monitoring Alzheimer's Dementia (AD) by analyzing Electroencephalography (EEG) signals. To accomplish this, a signal decomposition technique known as Intrinsic Time Scale Decomposition (ITD) is employed to classify EEG segments obtained from both AD patients and control subjects. The analysis specifically concentrates on 5-second EEG segments, utilizing ITD to extract Proper Rotation Components (PRCs) from these segments. The PRCs are subsequently transformed into Time-Frequency (TF) images using the Short-Time Fourier Transform (STFT) spectrogram. These TF images serve as training data for a 2-Dimensional Convolutional Neural Network (2D CNN). The proposed approach is compared with the classification of the spectrogram of 5-second EEG segments using the same CNN architecture. The experimental results conclusively demonstrate the superior classification performance of the ITD-based approach when compared to the utilization of raw EEG signals. |
Author | Cura, Ozlem Karabiber Akan, Aydin Sen, Sena Yagmur |
Author_xml | – sequence: 1 givenname: Sena Yagmur surname: Sen fullname: Sen, Sena Yagmur email: sena.yagmur@ieu.edu.tr organization: Izmir University of Economics,Dept. of Electrical and Electronics Eng,Izmir,TURKEY – sequence: 2 givenname: Ozlem Karabiber surname: Cura fullname: Cura, Ozlem Karabiber email: ozlem.karabiber@ikcu.edu.tr organization: Izmir Katip Celebi University,Dept. of Biomedical Eng,Izmir,TURKEY – sequence: 3 givenname: Aydin surname: Akan fullname: Akan, Aydin email: akan.aydin@ieu.edu.tr organization: Izmir University of Economics,Dept. of Electrical and Electronics Eng,Izmir,TURKEY |
BookMark | eNo1kMFOAjEURavRRET-wMT-wOBrO-1rlwQBSSZxAcS4Ip3hldQwHZzigr-XRF2dzT13ce7ZTeoSMfYkYCwEuOfJ6mOjLSo7liDVWIB0BhGv2Mihs0qDAqMdXLOBRIQCXWnu2CjnTwBQEkohzIC9Tw8-5xhi40-xS7wL_IVaSqfo-Wy24Ku4T_6QeX3mmxzTnq9jS8W8p69vSs2ZL1u_p8xD1188OvKKfJ8uuwd2Gy4ejf44ZJv5bD19Laq3xXI6qYoohDsVFsF4r0lgkK606Mg2vqlLhcZrY0gCOr9TYhesbOpQGyd006AsMaiy1l4N2ePvbySi7bGPre_P2_8W6gfw8lTV |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ASYU58738.2023.10296777 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 9798350306590 |
EISSN | 2770-7946 |
EndPage | 6 |
ExternalDocumentID | 10296777 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK OCL RIE RIL |
ID | FETCH-LOGICAL-i119t-8706aa5e17f294879e8cacb4376a566e2079ad31df82cbfb6915cc7247f34b5a3 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:36:17 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i119t-8706aa5e17f294879e8cacb4376a566e2079ad31df82cbfb6915cc7247f34b5a3 |
PageCount | 6 |
ParticipantIDs | ieee_primary_10296777 |
PublicationCentury | 2000 |
PublicationDate | 2023-Oct.-11 |
PublicationDateYYYYMMDD | 2023-10-11 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-Oct.-11 day: 11 |
PublicationDecade | 2020 |
PublicationTitle | Innovations in Intelligent Systems and Applications Conference (Online) |
PublicationTitleAbbrev | ASYU |
PublicationYear | 2023 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0003204116 |
Score | 1.8501639 |
Snippet | Dementia is a prevalent neurological disorder that impairs cognitive functions and significantly diminishes the quality of life. In this research, a deep... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 1 |
SubjectTerms | Alzehimer's Dementia (AD) Brain modeling Classification CNNs Deep learning Electroencephalography (EEG) Fourier transforms Image segmentation Intrinsic Time Scale Decomposition (ITD) Neurological diseases Short-Time Fourier Transform (STFT) Spectrogram Time-frequency analysis Training data |
Title | Classification of Dementia EEG Signals by Using Time-Frequency Images for Deep Learning |
URI | https://ieeexplore.ieee.org/document/10296777 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LSgMxFA22K1cqVnyThduMk8dMJkvR1ipYhFqsq5JnKWJb2umifr1JZlpRENwNAxnCDZNzc3POuQBc5YYpnWmCFJUKMeMskpKlyCOf08GgXERTn6de3h2wx2E2rMXqUQtjrY3kM5uEx3iXb2Z6FUpl_g8nIuecN0DDn9wqsda2oEJJyjDOaw4XTsX1Tf9tkBWcBgYXoclm9I8-KhFGOnugt5lAxR55T1alSvTnL2_Gf89wH7S-FXvweYtFB2DHTg_Ba-x4GbhAMfxw5uBdrAZOJGy372F_Mg7uyVCtYWQOwKAHQZ1Fxa5ew4cPv9ksoU9r_Tg7h7UX67gFBp32y20X1Y0U0ARjUaJwlyllZjF3RPgTirCFlloxv7lIn85ZknIhDcXGFUQrp3KBM605YdxRpjJJj0BzOpvaYwAlEUYZn5ZR53MBURS5yYzERusitf5jJ6AVojKaV14Zo01ATv94fwZ2w-IENMD4HDTLxcpeeJgv1WVc3i8DV6cn |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwGG0UD3pSI8bf9uB1uHbtuh6NgqhATICIJ9KfhBiB4DjgX2_bDYwmJt6WJV2afmnft6_vvQ-Aq1QTqajCkUyEjIi2JhKCxJFDPqu8QTkPpj7tTtrsk8cBHZRi9aCFMcYE8pmp-cdwl6-nauFLZW6HY54yxjbBlgN-igq51rqkkuCYIJSWLC4U8-ub7mufZizxHC6c1Fbjf3RSCUDS2AWd1RQK_shbbZHLmvr85c747znugeq3Zg8-r9FoH2yYyQF4CT0vPRsoBABOLbwL9cCxgPX6PeyOR94_GcolDNwB6BUhUWNe8KuX8OHdHTcf0CW2bpyZwdKNdVQF_Ua9d9uMylYK0Rghnkf-NlMIahCzmLt_FG4yJZQk7ngRLqEzOGZc6ARpm2ElrUw5okoxTJhNiKQiOQSVyXRijgAUmGupXWKWWJcN8CxLNdUCaaWy2LiPHYOqX5XhrHDLGK4W5OSP95dgu9lrt4ath87TKdjxgfLYgNAZqOTzhTl3oJ_LixDqL-4qqnA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Innovations+in+Intelligent+Systems+and+Applications+Conference+%28Online%29&rft.atitle=Classification+of+Dementia+EEG+Signals+by+Using+Time-Frequency+Images+for+Deep+Learning&rft.au=Sen%2C+Sena+Yagmur&rft.au=Cura%2C+Ozlem+Karabiber&rft.au=Akan%2C+Aydin&rft.date=2023-10-11&rft.pub=IEEE&rft.eissn=2770-7946&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FASYU58738.2023.10296777&rft.externalDocID=10296777 |