Classification of Dementia EEG Signals by Using Time-Frequency Images for Deep Learning

Dementia is a prevalent neurological disorder that impairs cognitive functions and significantly diminishes the quality of life. In this research, a deep learning method is introduced for detecting and monitoring Alzheimer's Dementia (AD) by analyzing Electroencephalography (EEG) signals. To ac...

Full description

Saved in:
Bibliographic Details
Published inInnovations in Intelligent Systems and Applications Conference (Online) pp. 1 - 6
Main Authors Sen, Sena Yagmur, Cura, Ozlem Karabiber, Akan, Aydin
Format Conference Proceeding
LanguageEnglish
Published IEEE 11.10.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Dementia is a prevalent neurological disorder that impairs cognitive functions and significantly diminishes the quality of life. In this research, a deep learning method is introduced for detecting and monitoring Alzheimer's Dementia (AD) by analyzing Electroencephalography (EEG) signals. To accomplish this, a signal decomposition technique known as Intrinsic Time Scale Decomposition (ITD) is employed to classify EEG segments obtained from both AD patients and control subjects. The analysis specifically concentrates on 5-second EEG segments, utilizing ITD to extract Proper Rotation Components (PRCs) from these segments. The PRCs are subsequently transformed into Time-Frequency (TF) images using the Short-Time Fourier Transform (STFT) spectrogram. These TF images serve as training data for a 2-Dimensional Convolutional Neural Network (2D CNN). The proposed approach is compared with the classification of the spectrogram of 5-second EEG segments using the same CNN architecture. The experimental results conclusively demonstrate the superior classification performance of the ITD-based approach when compared to the utilization of raw EEG signals.
AbstractList Dementia is a prevalent neurological disorder that impairs cognitive functions and significantly diminishes the quality of life. In this research, a deep learning method is introduced for detecting and monitoring Alzheimer's Dementia (AD) by analyzing Electroencephalography (EEG) signals. To accomplish this, a signal decomposition technique known as Intrinsic Time Scale Decomposition (ITD) is employed to classify EEG segments obtained from both AD patients and control subjects. The analysis specifically concentrates on 5-second EEG segments, utilizing ITD to extract Proper Rotation Components (PRCs) from these segments. The PRCs are subsequently transformed into Time-Frequency (TF) images using the Short-Time Fourier Transform (STFT) spectrogram. These TF images serve as training data for a 2-Dimensional Convolutional Neural Network (2D CNN). The proposed approach is compared with the classification of the spectrogram of 5-second EEG segments using the same CNN architecture. The experimental results conclusively demonstrate the superior classification performance of the ITD-based approach when compared to the utilization of raw EEG signals.
Author Cura, Ozlem Karabiber
Akan, Aydin
Sen, Sena Yagmur
Author_xml – sequence: 1
  givenname: Sena Yagmur
  surname: Sen
  fullname: Sen, Sena Yagmur
  email: sena.yagmur@ieu.edu.tr
  organization: Izmir University of Economics,Dept. of Electrical and Electronics Eng,Izmir,TURKEY
– sequence: 2
  givenname: Ozlem Karabiber
  surname: Cura
  fullname: Cura, Ozlem Karabiber
  email: ozlem.karabiber@ikcu.edu.tr
  organization: Izmir Katip Celebi University,Dept. of Biomedical Eng,Izmir,TURKEY
– sequence: 3
  givenname: Aydin
  surname: Akan
  fullname: Akan, Aydin
  email: akan.aydin@ieu.edu.tr
  organization: Izmir University of Economics,Dept. of Electrical and Electronics Eng,Izmir,TURKEY
BookMark eNo1kMFOAjEURavRRET-wMT-wOBrO-1rlwQBSSZxAcS4Ip3hldQwHZzigr-XRF2dzT13ce7ZTeoSMfYkYCwEuOfJ6mOjLSo7liDVWIB0BhGv2Mihs0qDAqMdXLOBRIQCXWnu2CjnTwBQEkohzIC9Tw8-5xhi40-xS7wL_IVaSqfo-Wy24Ku4T_6QeX3mmxzTnq9jS8W8p69vSs2ZL1u_p8xD1188OvKKfJ8uuwd2Gy4ejf44ZJv5bD19Laq3xXI6qYoohDsVFsF4r0lgkK606Mg2vqlLhcZrY0gCOr9TYhesbOpQGyd006AsMaiy1l4N2ePvbySi7bGPre_P2_8W6gfw8lTV
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ASYU58738.2023.10296777
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350306590
EISSN 2770-7946
EndPage 6
ExternalDocumentID 10296777
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i119t-8706aa5e17f294879e8cacb4376a566e2079ad31df82cbfb6915cc7247f34b5a3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:36:17 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-8706aa5e17f294879e8cacb4376a566e2079ad31df82cbfb6915cc7247f34b5a3
PageCount 6
ParticipantIDs ieee_primary_10296777
PublicationCentury 2000
PublicationDate 2023-Oct.-11
PublicationDateYYYYMMDD 2023-10-11
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-Oct.-11
  day: 11
PublicationDecade 2020
PublicationTitle Innovations in Intelligent Systems and Applications Conference (Online)
PublicationTitleAbbrev ASYU
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003204116
Score 1.8501639
Snippet Dementia is a prevalent neurological disorder that impairs cognitive functions and significantly diminishes the quality of life. In this research, a deep...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Alzehimer's Dementia (AD)
Brain modeling
Classification
CNNs
Deep learning
Electroencephalography (EEG)
Fourier transforms
Image segmentation
Intrinsic Time Scale Decomposition (ITD)
Neurological diseases
Short-Time Fourier Transform (STFT)
Spectrogram
Time-frequency analysis
Training data
Title Classification of Dementia EEG Signals by Using Time-Frequency Images for Deep Learning
URI https://ieeexplore.ieee.org/document/10296777
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LSgMxFA22K1cqVnyThduMk8dMJkvR1ipYhFqsq5JnKWJb2umifr1JZlpRENwNAxnCDZNzc3POuQBc5YYpnWmCFJUKMeMskpKlyCOf08GgXERTn6de3h2wx2E2rMXqUQtjrY3kM5uEx3iXb2Z6FUpl_g8nIuecN0DDn9wqsda2oEJJyjDOaw4XTsX1Tf9tkBWcBgYXoclm9I8-KhFGOnugt5lAxR55T1alSvTnL2_Gf89wH7S-FXvweYtFB2DHTg_Ba-x4GbhAMfxw5uBdrAZOJGy372F_Mg7uyVCtYWQOwKAHQZ1Fxa5ew4cPv9ksoU9r_Tg7h7UX67gFBp32y20X1Y0U0ARjUaJwlyllZjF3RPgTirCFlloxv7lIn85ZknIhDcXGFUQrp3KBM605YdxRpjJJj0BzOpvaYwAlEUYZn5ZR53MBURS5yYzERusitf5jJ6AVojKaV14Zo01ATv94fwZ2w-IENMD4HDTLxcpeeJgv1WVc3i8DV6cn
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwGG0UD3pSI8bf9uB1uHbtuh6NgqhATICIJ9KfhBiB4DjgX2_bDYwmJt6WJV2afmnft6_vvQ-Aq1QTqajCkUyEjIi2JhKCxJFDPqu8QTkPpj7tTtrsk8cBHZRi9aCFMcYE8pmp-cdwl6-nauFLZW6HY54yxjbBlgN-igq51rqkkuCYIJSWLC4U8-ub7mufZizxHC6c1Fbjf3RSCUDS2AWd1RQK_shbbZHLmvr85c747znugeq3Zg8-r9FoH2yYyQF4CT0vPRsoBABOLbwL9cCxgPX6PeyOR94_GcolDNwB6BUhUWNe8KuX8OHdHTcf0CW2bpyZwdKNdVQF_Ua9d9uMylYK0Rghnkf-NlMIahCzmLt_FG4yJZQk7ngRLqEzOGZc6ARpm2ElrUw5okoxTJhNiKQiOQSVyXRijgAUmGupXWKWWJcN8CxLNdUCaaWy2LiPHYOqX5XhrHDLGK4W5OSP95dgu9lrt4ath87TKdjxgfLYgNAZqOTzhTl3oJ_LixDqL-4qqnA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=Innovations+in+Intelligent+Systems+and+Applications+Conference+%28Online%29&rft.atitle=Classification+of+Dementia+EEG+Signals+by+Using+Time-Frequency+Images+for+Deep+Learning&rft.au=Sen%2C+Sena+Yagmur&rft.au=Cura%2C+Ozlem+Karabiber&rft.au=Akan%2C+Aydin&rft.date=2023-10-11&rft.pub=IEEE&rft.eissn=2770-7946&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FASYU58738.2023.10296777&rft.externalDocID=10296777