Flexible Priori Proximal Bayesian Learning for High-Resolution SAR Imagery

The conventional high-resolution synthetic aperture radar(SAR) imagery based on Bayesian learning encounter the problems of static and inflexible of prior. In this paper, a novel Bayesian learning algorithm based on flexible prior (FP-Bayes) is proposed for high-resolution SAR imagery, in which a ne...

Full description

Saved in:
Bibliographic Details
Published in2021 CIE International Conference on Radar (Radar) pp. 207 - 210
Main Authors Liao, Xianhua, Yang, Lei, Dou, Yuchen, Li, Xuan
Format Conference Proceeding
LanguageEnglish
Published IEEE 15.12.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The conventional high-resolution synthetic aperture radar(SAR) imagery based on Bayesian learning encounter the problems of static and inflexible of prior. In this paper, a novel Bayesian learning algorithm based on flexible prior (FP-Bayes) is proposed for high-resolution SAR imagery, in which a new flexible prior is introduced to represent the rich features of target scene. However, the model becomes complicated due to the intended prior, which is hard to be solved by the classic Markov Chain Monte Carlo (MCMC) sampling algorithms. Therefore, the Hamiltonian Monte Carlo (HMC) is applied to this problem. Considering the potential function of the posterior distribution is likely to be non-differentiable, the proximal operator is introduced, and the proximal-HMC (P-HMC) is developed, which is capable of solving the sampling problem of this posterior. To this end, the high-resolution SAR images can be obtained. In the experimental part, the raw SAR data is utilized to verify the effectiveness and superiority of the proposed algorithm. The phase transition diagram (PTD) is also adopted to analyze the imaging performance quantitatively.
AbstractList The conventional high-resolution synthetic aperture radar(SAR) imagery based on Bayesian learning encounter the problems of static and inflexible of prior. In this paper, a novel Bayesian learning algorithm based on flexible prior (FP-Bayes) is proposed for high-resolution SAR imagery, in which a new flexible prior is introduced to represent the rich features of target scene. However, the model becomes complicated due to the intended prior, which is hard to be solved by the classic Markov Chain Monte Carlo (MCMC) sampling algorithms. Therefore, the Hamiltonian Monte Carlo (HMC) is applied to this problem. Considering the potential function of the posterior distribution is likely to be non-differentiable, the proximal operator is introduced, and the proximal-HMC (P-HMC) is developed, which is capable of solving the sampling problem of this posterior. To this end, the high-resolution SAR images can be obtained. In the experimental part, the raw SAR data is utilized to verify the effectiveness and superiority of the proposed algorithm. The phase transition diagram (PTD) is also adopted to analyze the imaging performance quantitatively.
Author Dou, Yuchen
Liao, Xianhua
Li, Xuan
Yang, Lei
Author_xml – sequence: 1
  givenname: Xianhua
  surname: Liao
  fullname: Liao, Xianhua
  email: liaoxianhua@126.com
  organization: Civil Aviation University of China,Tianjin Key Lab for Advanced Signal Processing,Tianjin,China
– sequence: 2
  givenname: Lei
  surname: Yang
  fullname: Yang, Lei
  email: yanglei840626@163.com
  organization: Civil Aviation University of China,Tianjin Key Lab for Advanced Signal Processing,Tianjin,China
– sequence: 3
  givenname: Yuchen
  surname: Dou
  fullname: Dou, Yuchen
  email: ydou1@macalester.edu
  organization: Macalester College,Saint Paul,United States
– sequence: 4
  givenname: Xuan
  surname: Li
  fullname: Li, Xuan
  email: lixuan@greatwall.com.cn
  organization: China Greatwall Technology Group Co., Ltd,Shenzhen,China
BookMark eNo1j0tOwzAUAA0Cibb0Bix8gYT3bCd-XpaKflAkUIB15cROMUoT5BSpuT2VgNXsRjNTdtX1nWeMI6SIYO5L62zMJCmdChCYIoAgQXjB5kYT5nmmDKESl2wicgWJ1jK_YdNh-AQATVpN2NOq9adQtZ6_xNDHcEZ_Cgfb8gc7-iHYjhfexi50e970kW_C_iMp_dC338fQd_x1UfLtwe59HG_ZdWPbwc__OGPvq8e35SYpntfb5aJIAqI5JiSdA6grUBJy1zilhDFGVAhSadNgTZmpXS6cAvQOnKvIKEuZrYBIG5IzdvfrDd773Vc818Zx9_8ufwBaSlAE
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/Radar53847.2021.10028281
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781665498142
1665498145
EISSN 2640-7736
EndPage 210
ExternalDocumentID 10028281
Genre orig-research
GroupedDBID 29P
6IE
6IF
6IK
6IL
6IN
AAJGR
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
JC5
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-i119t-83dd00cb04306dfd4429992b103479f1c859cd62d401ed0ddb894a85ab0887983
IEDL.DBID RIE
IngestDate Wed Jun 26 19:25:31 EDT 2024
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-83dd00cb04306dfd4429992b103479f1c859cd62d401ed0ddb894a85ab0887983
PageCount 4
ParticipantIDs ieee_primary_10028281
PublicationCentury 2000
PublicationDate 2021-Dec.-15
PublicationDateYYYYMMDD 2021-12-15
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-Dec.-15
  day: 15
PublicationDecade 2020
PublicationTitle 2021 CIE International Conference on Radar (Radar)
PublicationTitleAbbrev RADAR
PublicationYear 2021
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0007874
Score 2.2150123
Snippet The conventional high-resolution synthetic aperture radar(SAR) imagery based on Bayesian learning encounter the problems of static and inflexible of prior. In...
SourceID ieee
SourceType Publisher
StartPage 207
SubjectTerms Apertures
Bayesian learning
flexible prior
Hamilton Monte Carlo (HMC)
Imaging
Markov processes
Monte Carlo methods
Radar imaging
Radar polarimetry
Scattering
synthetic aperture radar (SAR)
Title Flexible Priori Proximal Bayesian Learning for High-Resolution SAR Imagery
URI https://ieeexplore.ieee.org/document/10028281
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwGA26J33xNvFOHnxNl7RJljyqOObAIdPB3kbTJFKcm4wOnL_efO06LyD4VkJKSr40X05yzglCl9RoF0sTYImQnHDNOTHKM5IYxTlPvDXliel9X3aHvDcSo5VYvdTCOOdK8pmL4LE8y7ezbAFbZS1WIYQAdjbbWldirfW0G0Yer6k6VLcGacDh4W_m7QACYxbV7_64RaVMIp0d1K-br7gjL9GiMFH28cuZ8d_ft4uaX3o9_LDORHtow0330fY3q8ED1OuA86WZQMV8Ns-h_nv-mk7wdbp0oKTEK6vVZxzWsRj4HwT29quRiR-vBvjuFQwvlk007Nw-3XTJ6h4FkjOmC6ISaynNDNh7SesthxykY8MoyEg9y5TQmZWxDVjLWWpDfDRPlUgNTEFaJYeoMZ1N3RHCom2Es8IZJTWXPtFKu9Qnkjof1n5cHqMmdMv4rbLKGNc9cvJH-SnagugAP4SJM9Qo5gt3HrJ8YS7K6H4CuFqlgg
link.rule.ids 310,311,783,787,792,793,799,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwGA2iD-qLt4l38-Bru6RNsuRRxbHNbcjcYG-jaVIp7iKjA-evN1-7zgsIvpWSQsiX5vtOcs4JQjdEKxsI7WAJF8xjijFPy4R6oZaMsTAxOj8x7XRFY8BaQz5cidVzLYy1NiefWR8e87N8M4sXsFVWpQVCcGBnyxXWUhRyrfXC6-YeK8k6RFV7kUPi7n9mNQcDA-qXX_-4RyVPI_U91C07ULBHXv1Fpv3445c34797uI8qX4o9_LTORQdow04P0e43s8Ej1KqD96UeQ8N0Nk-h_Xs6icb4Llpa0FLildnqC3aVLAYGiAe7-8XcxM-3PdycgOXFsoIG9Yf-fcNb3aTgpZSqzJOhMYTEGgy-hEkMgyykAk0JCEkTGkuuYiMC49CWNcS4CCkWSR5pWISUDI_R5nQ2tScI85rm1nCrpVBMJKGSykZJKIhNXPXHxCmqwLCM3gqzjFE5Imd_vL9G241-pz1qN7uP52gHIgVsEcov0GY2X9hLl_MzfZVH-hOQ1qjN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2021+CIE+International+Conference+on+Radar+%28Radar%29&rft.atitle=Flexible+Priori+Proximal+Bayesian+Learning+for+High-Resolution+SAR+Imagery&rft.au=Liao%2C+Xianhua&rft.au=Yang%2C+Lei&rft.au=Dou%2C+Yuchen&rft.au=Li%2C+Xuan&rft.date=2021-12-15&rft.pub=IEEE&rft.eissn=2640-7736&rft.spage=207&rft.epage=210&rft_id=info:doi/10.1109%2FRadar53847.2021.10028281&rft.externalDocID=10028281