Unsupervised Automated Keyphrase Extraction Approaches: A Literature Review
Because of technical improvements and the exponential growth of textual data and digital sources, extracting high-quality keywords at a high level in research is now more challenging. Keyphrase extraction characteristics, which are growing in popularity, are required for high-level keyword extractio...
Saved in:
Published in | 2023 International Conference on Information Technology, Applied Mathematics and Statistics (ICITAMS) pp. 269 - 274 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
20.03.2023
|
Subjects | |
Online Access | Get full text |
DOI | 10.1109/ICITAMS57610.2023.10525639 |
Cover
Abstract | Because of technical improvements and the exponential growth of textual data and digital sources, extracting high-quality keywords at a high level in research is now more challenging. Keyphrase extraction characteristics, which are growing in popularity, are required for high-level keyword extraction. Automated keyphrase extraction (AKE) aims to find the significant subjects of a text document by automatically identifying a small group of single or multi-words from inside the text. AKE is crucial to many NLP and information retrieval tasks, including document summarizing and classification, article recommendation, and full-text indexing. This paper presents a survey of various techniques available for keyphrase extraction, discusses some important feature selection methods utilized by researchers to rank candidate keyphrases based on their importance, and finally debates various benefits and drawbacks for each category. |
---|---|
AbstractList | Because of technical improvements and the exponential growth of textual data and digital sources, extracting high-quality keywords at a high level in research is now more challenging. Keyphrase extraction characteristics, which are growing in popularity, are required for high-level keyword extraction. Automated keyphrase extraction (AKE) aims to find the significant subjects of a text document by automatically identifying a small group of single or multi-words from inside the text. AKE is crucial to many NLP and information retrieval tasks, including document summarizing and classification, article recommendation, and full-text indexing. This paper presents a survey of various techniques available for keyphrase extraction, discusses some important feature selection methods utilized by researchers to rank candidate keyphrases based on their importance, and finally debates various benefits and drawbacks for each category. |
Author | Kahdum, Alyaa Abdual Al-Hameed, Wafaa |
Author_xml | – sequence: 1 givenname: Alyaa Abdual surname: Kahdum fullname: Kahdum, Alyaa Abdual email: alyaamerjan.sw.msc@student.uobabylon.edu.iq organization: Babylon University,dept. of software,Babylon,Iraq – sequence: 2 givenname: Wafaa surname: Al-Hameed fullname: Al-Hameed, Wafaa email: it.wafaa.mohammed@uobabylon.edu.iq organization: Babylon University,dept. of software,Babylon,Iraq |
BookMark | eNo1j01Lw0AURUfQhdb-AxeD-9T5zoy7EKqGRgRt1-UleaEDNgmTSbX_3oC6upezuJx7Qy67vkNC7jlbcc7cQ5EX2-z1Q6dmJoIJueJMC22kuyBLlzorNZNSc26vyWbXjdOA4eRHbGg2xf4IcW4bPA-HACPS9XcMUEffdzQbhtBDfcDxkWa09BEDxCkgfceTx69bctXC54jLv1yQ3dN6m78k5dtzkWdl4jl3MUlbJQwo5yqr0UFVA-NpA4xVDqTRqhEaFBNgoWXGWjb7tsJxxetWSGuUXJC7312PiPsh-COE8_7_o_wBUh9Mlw |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/ICITAMS57610.2023.10525639 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Xplore POP ALL IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISBN | 9798350335118 |
EndPage | 274 |
ExternalDocumentID | 10525639 |
Genre | orig-research |
GroupedDBID | 6IE 6IL CBEJK RIE RIL |
ID | FETCH-LOGICAL-i119t-7f426a499b85e9abca017da00b9a3654d25a402a8af06880983f29141cf238643 |
IEDL.DBID | RIE |
IngestDate | Wed May 29 05:43:46 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i119t-7f426a499b85e9abca017da00b9a3654d25a402a8af06880983f29141cf238643 |
PageCount | 6 |
ParticipantIDs | ieee_primary_10525639 |
PublicationCentury | 2000 |
PublicationDate | 2023-March-20 |
PublicationDateYYYYMMDD | 2023-03-20 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-March-20 day: 20 |
PublicationDecade | 2020 |
PublicationTitle | 2023 International Conference on Information Technology, Applied Mathematics and Statistics (ICITAMS) |
PublicationTitleAbbrev | ICITAMS |
PublicationYear | 2023 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
Score | 1.8286217 |
Snippet | Because of technical improvements and the exponential growth of textual data and digital sources, extracting high-quality keywords at a high level in research... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 269 |
SubjectTerms | Data mining Feature extraction Information retrieval keyphrase keyphrase extraction Mathematics Neural-based Approaches review Semantics Surveys Syntactics Traditional Approaches Unsupervised approach keyphrase extraction |
Title | Unsupervised Automated Keyphrase Extraction Approaches: A Literature Review |
URI | https://ieeexplore.ieee.org/document/10525639 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH64nfTir4m_ycFra9K0XeNtjI3NueFhg91G0iQgQidrC-pf70vbTRQEb6FJaMhr-uUl7_sewJ2yiIpcMS_WGh0U3hWeskHXi514utZSMuOIwtNZPFqEj8to2ZDVKy6MMaYKPjO-K1Z3-Xqdlu6oDFd4hAjNRQta-J3VZK1GSJRRcT_uj-fo_uIO2gU4Ixj52w4_UqdUyDE8hNn2nXXAyKtfFspPP3_JMf57UEfQ-Sbpkecd_BzDnslO4GC6k2HNT2GyyPLyzf0NcqNJryzWWIOliflAGyJ-kcF7sampDaTXqIub_IH0yNNObpnU1wcdWAwH8_7Ia7IneC-MicLrWgRfiQ6NSiIjpEolLj4tKVVC8jgKdRBJdB5lIq1LPENFwm0gWMhSizCOG5UzaGfrzJwDQbNx7CWwgQyllUkShoqL2FJBZcD0BXTcvKzeaoGM1XZKLv94fgX7zjwulCug19AuNqW5QWwv1G1l0y_Z6aS2 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFH_oPKgXvyZ-m4PX1qZNu8bbGBub-8DDBruNpElAhG6sLah_vS9tN1EQvIUmoSGP9JfX936_B_AgDaJiIKkTKYUOStDijjR-y4mseLpSQlBticLjSdSfsed5OK_J6iUXRmtdJp9p1zbLWL5aJoX9VYYnPESEDvgu7CHws7Cia9VSotTjj4POYIoOMN6hbYozwpG7mfKjeEqJHb0jmGzeWqWMvLlFLt3k85cg47-XdQzNb5oeedkC0Ans6PQUDsdbIdbsDIazNCtW9nuQaUXaRb7EHmwN9QdaERGMdN_zdUVuIO1aX1xnT6RNRlvBZVIFEJow63Wnnb5T109wXinludMyCL8CXRoZh5oLmQg8fkp4nuQiiEKm_FCg-yhiYWzpGY_HgfE5ZTQxCOR4VTmHRrpM9QUQNFyAszgOEEwYEceMyYBHxuOe8Km6hKbdl8WqkshYbLbk6o_n97Dfn45Hi9FgMryGA2sqm9jlezfQyNeFvkWkz-Vdad8vqnmoAw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+International+Conference+on+Information+Technology%2C+Applied+Mathematics+and+Statistics+%28ICITAMS%29&rft.atitle=Unsupervised+Automated+Keyphrase+Extraction+Approaches%3A+A+Literature+Review&rft.au=Kahdum%2C+Alyaa+Abdual&rft.au=Al-Hameed%2C+Wafaa&rft.date=2023-03-20&rft.pub=IEEE&rft.spage=269&rft.epage=274&rft_id=info:doi/10.1109%2FICITAMS57610.2023.10525639&rft.externalDocID=10525639 |