Unsupervised Automated Keyphrase Extraction Approaches: A Literature Review

Because of technical improvements and the exponential growth of textual data and digital sources, extracting high-quality keywords at a high level in research is now more challenging. Keyphrase extraction characteristics, which are growing in popularity, are required for high-level keyword extractio...

Full description

Saved in:
Bibliographic Details
Published in2023 International Conference on Information Technology, Applied Mathematics and Statistics (ICITAMS) pp. 269 - 274
Main Authors Kahdum, Alyaa Abdual, Al-Hameed, Wafaa
Format Conference Proceeding
LanguageEnglish
Published IEEE 20.03.2023
Subjects
Online AccessGet full text
DOI10.1109/ICITAMS57610.2023.10525639

Cover

Abstract Because of technical improvements and the exponential growth of textual data and digital sources, extracting high-quality keywords at a high level in research is now more challenging. Keyphrase extraction characteristics, which are growing in popularity, are required for high-level keyword extraction. Automated keyphrase extraction (AKE) aims to find the significant subjects of a text document by automatically identifying a small group of single or multi-words from inside the text. AKE is crucial to many NLP and information retrieval tasks, including document summarizing and classification, article recommendation, and full-text indexing. This paper presents a survey of various techniques available for keyphrase extraction, discusses some important feature selection methods utilized by researchers to rank candidate keyphrases based on their importance, and finally debates various benefits and drawbacks for each category.
AbstractList Because of technical improvements and the exponential growth of textual data and digital sources, extracting high-quality keywords at a high level in research is now more challenging. Keyphrase extraction characteristics, which are growing in popularity, are required for high-level keyword extraction. Automated keyphrase extraction (AKE) aims to find the significant subjects of a text document by automatically identifying a small group of single or multi-words from inside the text. AKE is crucial to many NLP and information retrieval tasks, including document summarizing and classification, article recommendation, and full-text indexing. This paper presents a survey of various techniques available for keyphrase extraction, discusses some important feature selection methods utilized by researchers to rank candidate keyphrases based on their importance, and finally debates various benefits and drawbacks for each category.
Author Kahdum, Alyaa Abdual
Al-Hameed, Wafaa
Author_xml – sequence: 1
  givenname: Alyaa Abdual
  surname: Kahdum
  fullname: Kahdum, Alyaa Abdual
  email: alyaamerjan.sw.msc@student.uobabylon.edu.iq
  organization: Babylon University,dept. of software,Babylon,Iraq
– sequence: 2
  givenname: Wafaa
  surname: Al-Hameed
  fullname: Al-Hameed, Wafaa
  email: it.wafaa.mohammed@uobabylon.edu.iq
  organization: Babylon University,dept. of software,Babylon,Iraq
BookMark eNo1j01Lw0AURUfQhdb-AxeD-9T5zoy7EKqGRgRt1-UleaEDNgmTSbX_3oC6upezuJx7Qy67vkNC7jlbcc7cQ5EX2-z1Q6dmJoIJueJMC22kuyBLlzorNZNSc26vyWbXjdOA4eRHbGg2xf4IcW4bPA-HACPS9XcMUEffdzQbhtBDfcDxkWa09BEDxCkgfceTx69bctXC54jLv1yQ3dN6m78k5dtzkWdl4jl3MUlbJQwo5yqr0UFVA-NpA4xVDqTRqhEaFBNgoWXGWjb7tsJxxetWSGuUXJC7312PiPsh-COE8_7_o_wBUh9Mlw
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICITAMS57610.2023.10525639
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Xplore POP ALL
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISBN 9798350335118
EndPage 274
ExternalDocumentID 10525639
Genre orig-research
GroupedDBID 6IE
6IL
CBEJK
RIE
RIL
ID FETCH-LOGICAL-i119t-7f426a499b85e9abca017da00b9a3654d25a402a8af06880983f29141cf238643
IEDL.DBID RIE
IngestDate Wed May 29 05:43:46 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-7f426a499b85e9abca017da00b9a3654d25a402a8af06880983f29141cf238643
PageCount 6
ParticipantIDs ieee_primary_10525639
PublicationCentury 2000
PublicationDate 2023-March-20
PublicationDateYYYYMMDD 2023-03-20
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-March-20
  day: 20
PublicationDecade 2020
PublicationTitle 2023 International Conference on Information Technology, Applied Mathematics and Statistics (ICITAMS)
PublicationTitleAbbrev ICITAMS
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
Score 1.8286217
Snippet Because of technical improvements and the exponential growth of textual data and digital sources, extracting high-quality keywords at a high level in research...
SourceID ieee
SourceType Publisher
StartPage 269
SubjectTerms Data mining
Feature extraction
Information retrieval
keyphrase
keyphrase extraction
Mathematics
Neural-based Approaches
review
Semantics
Surveys
Syntactics
Traditional Approaches
Unsupervised approach keyphrase extraction
Title Unsupervised Automated Keyphrase Extraction Approaches: A Literature Review
URI https://ieeexplore.ieee.org/document/10525639
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH64nfTir4m_ycFra9K0XeNtjI3NueFhg91G0iQgQidrC-pf70vbTRQEb6FJaMhr-uUl7_sewJ2yiIpcMS_WGh0U3hWeskHXi514utZSMuOIwtNZPFqEj8to2ZDVKy6MMaYKPjO-K1Z3-Xqdlu6oDFd4hAjNRQta-J3VZK1GSJRRcT_uj-fo_uIO2gU4Ixj52w4_UqdUyDE8hNn2nXXAyKtfFspPP3_JMf57UEfQ-Sbpkecd_BzDnslO4GC6k2HNT2GyyPLyzf0NcqNJryzWWIOliflAGyJ-kcF7sampDaTXqIub_IH0yNNObpnU1wcdWAwH8_7Ia7IneC-MicLrWgRfiQ6NSiIjpEolLj4tKVVC8jgKdRBJdB5lIq1LPENFwm0gWMhSizCOG5UzaGfrzJwDQbNx7CWwgQyllUkShoqL2FJBZcD0BXTcvKzeaoGM1XZKLv94fgX7zjwulCug19AuNqW5QWwv1G1l0y_Z6aS2
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFH_oPKgXvyZ-m4PX1qZNu8bbGBub-8DDBruNpElAhG6sLah_vS9tN1EQvIUmoSGP9JfX936_B_AgDaJiIKkTKYUOStDijjR-y4mseLpSQlBticLjSdSfsed5OK_J6iUXRmtdJp9p1zbLWL5aJoX9VYYnPESEDvgu7CHws7Cia9VSotTjj4POYIoOMN6hbYozwpG7mfKjeEqJHb0jmGzeWqWMvLlFLt3k85cg47-XdQzNb5oeedkC0Ans6PQUDsdbIdbsDIazNCtW9nuQaUXaRb7EHmwN9QdaERGMdN_zdUVuIO1aX1xnT6RNRlvBZVIFEJow63Wnnb5T109wXinludMyCL8CXRoZh5oLmQg8fkp4nuQiiEKm_FCg-yhiYWzpGY_HgfE5ZTQxCOR4VTmHRrpM9QUQNFyAszgOEEwYEceMyYBHxuOe8Km6hKbdl8WqkshYbLbk6o_n97Dfn45Hi9FgMryGA2sqm9jlezfQyNeFvkWkz-Vdad8vqnmoAw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2023+International+Conference+on+Information+Technology%2C+Applied+Mathematics+and+Statistics+%28ICITAMS%29&rft.atitle=Unsupervised+Automated+Keyphrase+Extraction+Approaches%3A+A+Literature+Review&rft.au=Kahdum%2C+Alyaa+Abdual&rft.au=Al-Hameed%2C+Wafaa&rft.date=2023-03-20&rft.pub=IEEE&rft.spage=269&rft.epage=274&rft_id=info:doi/10.1109%2FICITAMS57610.2023.10525639&rft.externalDocID=10525639