Prototype Development of Speech Depression Prediction System Using TensorFlow Lite on Edge Computing

Depression, a significant contributor to global suicide rates, poses unique diagnostic challenges in traditional clinical settings, resulting in frequently delayed diagnoses and potential patient misrepresentation. To address this issue, we presented an innovative prototype that combines edge comput...

Full description

Saved in:
Bibliographic Details
Published inInternational Conference on Wireless and Telematics (Online) pp. 1 - 6
Main Authors Gunawan, Teddy Surya, Iwani Ibrahim, Nur Firzanah, Kartiwi, Mira, Ismail, Nanang
Format Conference Proceeding
LanguageEnglish
Published IEEE 06.07.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Depression, a significant contributor to global suicide rates, poses unique diagnostic challenges in traditional clinical settings, resulting in frequently delayed diagnoses and potential patient misrepresentation. To address this issue, we presented an innovative prototype that combines edge computing and deep learning for improved and faster detection of depression through speech behavior analysis. Our model used a one-dimensional Convolutional Neural Network (CNN) with TensorFlow Lite on an NVIDIA Jetson Nano platform. A MAONO AU903 Studio-Quality USB Microphone was used to achieve optimal audio quality. By analyzing speech behavior, this setup effectively distinguished between depressive and non-depressive speech patterns. A data augmentation procedure that included noise in audio data increased the model's robustness. Because of its suitability and an extensive collection of interviews with subjects in various depressive states, the Distress Analysis Interview Corpus - Wizard of Oz (DAIC-WOZ) database was used for training and testing. The successful operation of the prototype demonstrates the method's diagnostic potential for clinical depression. While the developed model's accuracy could be improved by investigating alternative deep learning architectures, it provided a solid foundation for future development. The study emphasized the importance of further research into real-time depression prediction using speech analysis, which has the potential to revolutionize mental health diagnostics.
AbstractList Depression, a significant contributor to global suicide rates, poses unique diagnostic challenges in traditional clinical settings, resulting in frequently delayed diagnoses and potential patient misrepresentation. To address this issue, we presented an innovative prototype that combines edge computing and deep learning for improved and faster detection of depression through speech behavior analysis. Our model used a one-dimensional Convolutional Neural Network (CNN) with TensorFlow Lite on an NVIDIA Jetson Nano platform. A MAONO AU903 Studio-Quality USB Microphone was used to achieve optimal audio quality. By analyzing speech behavior, this setup effectively distinguished between depressive and non-depressive speech patterns. A data augmentation procedure that included noise in audio data increased the model's robustness. Because of its suitability and an extensive collection of interviews with subjects in various depressive states, the Distress Analysis Interview Corpus - Wizard of Oz (DAIC-WOZ) database was used for training and testing. The successful operation of the prototype demonstrates the method's diagnostic potential for clinical depression. While the developed model's accuracy could be improved by investigating alternative deep learning architectures, it provided a solid foundation for future development. The study emphasized the importance of further research into real-time depression prediction using speech analysis, which has the potential to revolutionize mental health diagnostics.
Author Iwani Ibrahim, Nur Firzanah
Gunawan, Teddy Surya
Kartiwi, Mira
Ismail, Nanang
Author_xml – sequence: 1
  givenname: Teddy Surya
  surname: Gunawan
  fullname: Gunawan, Teddy Surya
  email: tsgunawan@iium.edu.my
  organization: International Islamic University Malaysia,Electrical and Computer Engineering Department,Kuala Lumpur,Malaysia,53100
– sequence: 2
  givenname: Nur Firzanah
  surname: Iwani Ibrahim
  fullname: Iwani Ibrahim, Nur Firzanah
  email: firzanahibrahim98@gmail.com
  organization: International Islamic University Malaysia,Electrical and Computer Engineering Department,Kuala Lumpur,Malaysia,53100
– sequence: 3
  givenname: Mira
  surname: Kartiwi
  fullname: Kartiwi, Mira
  email: mira@iium.edu.my
  organization: International Islamic University Malaysia,Information Systems Department,Kuala Lumpur,Malaysia,53100
– sequence: 4
  givenname: Nanang
  surname: Ismail
  fullname: Ismail, Nanang
  email: nanang.is@uinsgd.ac.id
  organization: UIN Sunan Gunung Djati,Department of Electrical Engineering,Bandung,Indonesia
BookMark eNo1UF9LwzAcjKLgnPsGgvkCnfnTNL88St10UHCwDR9H2_w6I2tTmqjs21tRX-6Ou-Me7ppcdL5DQu44m3POzP0qf90qACHngo3AmZQq5eqMzIw2IBWTTDFhzslE6MwkIMBckVkI74wxybXWoCfErgcffTz1SB_xE4--b7GL1Dd00yPWb6PbDxiC8x1dD2hdHX_k5hQitnQXXHegW-yCH5ZH_0ULF5GO-cIekOa-7T_i2Lghl015DDj74ynZLRfb_DkpXp5W-UOROM5NTLTG1DKVVSDqylZZyUvZKFAIWClsFJZpoyRoC7LMIGPAGmGlTFMtam2FkVNy-7vrEHHfD64th9P-_xj5DTYhWvE
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/ICWT58823.2023.10335415
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 9798350305029
EISSN 2769-8289
EndPage 6
ExternalDocumentID 10335415
Genre orig-research
GroupedDBID 6IE
6IF
6IK
6IL
6IN
AAJGR
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
OCL
RIE
RIL
ID FETCH-LOGICAL-i119t-77e4d056b82cbdb6a1a3f585e8eb5ef5ea4f5387d83a686080f2d334472c7d293
IEDL.DBID RIE
IngestDate Wed Aug 27 02:22:51 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i119t-77e4d056b82cbdb6a1a3f585e8eb5ef5ea4f5387d83a686080f2d334472c7d293
PageCount 6
ParticipantIDs ieee_primary_10335415
PublicationCentury 2000
PublicationDate 2023-July-6
PublicationDateYYYYMMDD 2023-07-06
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-July-6
  day: 06
PublicationDecade 2020
PublicationTitle International Conference on Wireless and Telematics (Online)
PublicationTitleAbbrev ICWT
PublicationYear 2023
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003177787
Score 2.2251852
Snippet Depression, a significant contributor to global suicide rates, poses unique diagnostic challenges in traditional clinical settings, resulting in frequently...
SourceID ieee
SourceType Publisher
StartPage 1
SubjectTerms Behavioral sciences
Convolutional neural networks
deep learning
Depression
depression diagnosis
edge computing
mental health diagnostic
Prototypes
real-time testing
TensorFlow Lite
Training
Universal Serial Bus
Wireless communication
Title Prototype Development of Speech Depression Prediction System Using TensorFlow Lite on Edge Computing
URI https://ieeexplore.ieee.org/document/10335415
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60J08qVnyzB6-J7iPJ5lxaqmARbLG3so-JipKUkiD4653dpPUBgrcwm4FlJ9mZ2f2-GUIuC6alzArc_bgwkZR5FmlZ2MhwqxKecie15w7fTdLxTN7Ok3lHVg9cGAAI4DOI_WO4y3eVbfxRGf7hQiSBUr6NmVtL1tocqKAjzPDr6zBc7Dq_uhk8ThOMIEXse4THa-0ffVSCGxntksl6Ai165DVuahPbj1-1Gf89wz3S_2Ls0fuNL9onW1AeEIeSuvKHrPQbNohWBX1YAthnlHYw2BKV_Y2NtxJti5jTACagU0xzq9XorXqnvr4GxfGhewLadoPAN_pkNhpOB-Oo66oQvTCW1xhOg3QY9hjFrXEm1UyLApMGUGASKBJAW-EumDkldKpSjCgL7oQvDMht5jA6OCS9sirhiFCjFOSobTWOC2m1EwkzhqlUG4Fx4DHp-yVaLNvCGYv16pz8IT8lO95SAQ2bnpFevWrgHH1-bS6CrT8BIcSspA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA8yH_RJxYnf5sHXVtskbfo8NqZuQ7DDvY18XFWUdowOwb_eS7rNDxB8K5cehFyb--XyuztCLotIcZ4WuPvFTAecZ2mgeGECHRsp4iS2XLnc4eEo6Y_57URMlsnqPhcGADz5DEL36O_ybWUWLlSGfzhjwqeUb6LjF1GTrrUOqaArTPH7W7K4ouvs6qbzmAvEkCx0XcLDlf6PTirekfR2yGg1hYY_8houah2aj1_VGf89x13S_srZo_drb7RHNqDcJxYldeXCrPQbO4hWBX2YAZhnlC6JsCUquzsbZyfalDGnnk5AczzoVvPeW_VOXYUNiuNd-wS06QeBb7TJuNfNO_1g2VcheImirEZADdwi8NEyNtrqREWKFXhsAAlaQCEArYX7YGolU4lMEFMWsWWuNGBsUov44IC0yqqEQ0K1lJChtlE4zrhRlolI60gmSjNEgkek7ZZoOmtKZ0xXq3P8h_yCbPXz4WA6uBndnZBtZzXPjU1OSaueL-AMEUCtz73dPwFR76_t
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Conference+on+Wireless+and+Telematics+%28Online%29&rft.atitle=Prototype+Development+of+Speech+Depression+Prediction+System+Using+TensorFlow+Lite+on+Edge+Computing&rft.au=Gunawan%2C+Teddy+Surya&rft.au=Iwani+Ibrahim%2C+Nur+Firzanah&rft.au=Kartiwi%2C+Mira&rft.au=Ismail%2C+Nanang&rft.date=2023-07-06&rft.pub=IEEE&rft.eissn=2769-8289&rft.spage=1&rft.epage=6&rft_id=info:doi/10.1109%2FICWT58823.2023.10335415&rft.externalDocID=10335415